Effects of rainfall-induced physical crusts on soil carbon distribution and mineralization through surface pore structure

IF 6.1 1区 农林科学 Q1 SOIL SCIENCE
Ruikun Feng , Yiru Zhang , Jian Wang , Yuxing Wang , Ning Zhang , Diao She
{"title":"Effects of rainfall-induced physical crusts on soil carbon distribution and mineralization through surface pore structure","authors":"Ruikun Feng ,&nbsp;Yiru Zhang ,&nbsp;Jian Wang ,&nbsp;Yuxing Wang ,&nbsp;Ning Zhang ,&nbsp;Diao She","doi":"10.1016/j.still.2024.106373","DOIUrl":null,"url":null,"abstract":"<div><div>The vast carbon sequestration potential of soil implies that even minor changes in its characteristics can impact atmospheric carbon levels. However, little research has focused on the influence of rainfall-induced physical crusts, a common natural phenomenon, on soil organic carbon (SOC). In this study, we simulated contour farming patterns and induced artificial rainfall to obtain different types of physical crusts (structural and depositional crusts). We determined their effects on SOC mineralization rates and distribution and utilized XCT scanning technology to gather surface pore data, attempting to explain the reasons from the perspective of pore structure changes. The formation of physical crusts significantly enhanced SOC mineralization. During the 27-day mineralization experiment, the production of structural and depositional crusts increased cumulative mineralization rates by at least 23.07 % and 18.57 %, respectively. The underlying cause of this phenomenon is closely related to the drastic changes in soil pore structure, particularly the increase in the proportion of micropores and the enhancement of pore connectivity after crust cracking. Additionally, rainfall resulted in SOC enrichment in the surface crust but led to increased participation of subsoil organic carbon in the mineralization process. Consequently, the level of SOC in subsoil significantly decreased after the formation of physical crusts compared to soil without crusts. This study reveals the impact of rainfall-induced soil physical crusts on SOC release and storage and provides a microscopic pore perspective to explain the underlying mechanisms. Against the backdrop of global climate change, this research supplements theoretical understanding of the effects of rainfall events on soil carbon pools and predictions of soil organic carbon release.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"247 ","pages":"Article 106373"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Tillage Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016719872400374X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The vast carbon sequestration potential of soil implies that even minor changes in its characteristics can impact atmospheric carbon levels. However, little research has focused on the influence of rainfall-induced physical crusts, a common natural phenomenon, on soil organic carbon (SOC). In this study, we simulated contour farming patterns and induced artificial rainfall to obtain different types of physical crusts (structural and depositional crusts). We determined their effects on SOC mineralization rates and distribution and utilized XCT scanning technology to gather surface pore data, attempting to explain the reasons from the perspective of pore structure changes. The formation of physical crusts significantly enhanced SOC mineralization. During the 27-day mineralization experiment, the production of structural and depositional crusts increased cumulative mineralization rates by at least 23.07 % and 18.57 %, respectively. The underlying cause of this phenomenon is closely related to the drastic changes in soil pore structure, particularly the increase in the proportion of micropores and the enhancement of pore connectivity after crust cracking. Additionally, rainfall resulted in SOC enrichment in the surface crust but led to increased participation of subsoil organic carbon in the mineralization process. Consequently, the level of SOC in subsoil significantly decreased after the formation of physical crusts compared to soil without crusts. This study reveals the impact of rainfall-induced soil physical crusts on SOC release and storage and provides a microscopic pore perspective to explain the underlying mechanisms. Against the backdrop of global climate change, this research supplements theoretical understanding of the effects of rainfall events on soil carbon pools and predictions of soil organic carbon release.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soil & Tillage Research
Soil & Tillage Research 农林科学-土壤科学
CiteScore
13.00
自引率
6.20%
发文量
266
审稿时长
5 months
期刊介绍: Soil & Tillage Research examines the physical, chemical and biological changes in the soil caused by tillage and field traffic. Manuscripts will be considered on aspects of soil science, physics, technology, mechanization and applied engineering for a sustainable balance among productivity, environmental quality and profitability. The following are examples of suitable topics within the scope of the journal of Soil and Tillage Research: The agricultural and biosystems engineering associated with tillage (including no-tillage, reduced-tillage and direct drilling), irrigation and drainage, crops and crop rotations, fertilization, rehabilitation of mine spoils and processes used to modify soils. Soil change effects on establishment and yield of crops, growth of plants and roots, structure and erosion of soil, cycling of carbon and nutrients, greenhouse gas emissions, leaching, runoff and other processes that affect environmental quality. Characterization or modeling of tillage and field traffic responses, soil, climate, or topographic effects, soil deformation processes, tillage tools, traction devices, energy requirements, economics, surface and subsurface water quality effects, tillage effects on weed, pest and disease control, and their interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信