Mathematical modeling and economic optimization of a piperazine-based post-combustion carbon capture process

IF 4.6 3区 工程技术 Q2 ENERGY & FUELS
Ilayda Akkor , Shachit S. Iyer , John Dowdle , Le Wang , Chrysanthos E. Gounaris
{"title":"Mathematical modeling and economic optimization of a piperazine-based post-combustion carbon capture process","authors":"Ilayda Akkor ,&nbsp;Shachit S. Iyer ,&nbsp;John Dowdle ,&nbsp;Le Wang ,&nbsp;Chrysanthos E. Gounaris","doi":"10.1016/j.ijggc.2024.104282","DOIUrl":null,"url":null,"abstract":"<div><div>Given the urgent need to mitigate increasing CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions and alleviate the climate crisis, amine-based post-combustion capture (PCC) processes have emerged as a prominent method to reduce the emissions from industrial point sources. While many technological advancements have been introduced for such processes, leading to decreased energy requirements for capture, there are still only a few commercial installations because of their high costs. Therefore, these processes can benefit from process optimization to enhance their economic viability. This work presents a new open-source, rate-based, equation-oriented model of a novel PCC process that uses piperazine as the amine solvent. The model was implemented in Python, in accordance with the Pyomo-based <em>IDAES</em> modeling and optimization framework. The proposed nonlinear model can be used for both simulation and optimization. To ensure its robust convergence, we further devise a rigorous, multi-level cascade initialization scheme, whose principles can further be applied towards the initialization of similar process models. The model was validated with published pilot plant data and then optimized for pilot and commercial scales with an economic objective that considers both capital and operational costs. Results show that process optimization can indeed improve the economics of this technology, leading to 15.6% yearly savings at the pilot scale compared to the baseline case considered in the study. Additional parametric analyses were performed to understand how the flue gas flowrate and CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> concentration, as well as the target capture rate, affects the cost of capture.</div></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"140 ","pages":"Article 104282"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Greenhouse Gas Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1750583624002251","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Given the urgent need to mitigate increasing CO2 emissions and alleviate the climate crisis, amine-based post-combustion capture (PCC) processes have emerged as a prominent method to reduce the emissions from industrial point sources. While many technological advancements have been introduced for such processes, leading to decreased energy requirements for capture, there are still only a few commercial installations because of their high costs. Therefore, these processes can benefit from process optimization to enhance their economic viability. This work presents a new open-source, rate-based, equation-oriented model of a novel PCC process that uses piperazine as the amine solvent. The model was implemented in Python, in accordance with the Pyomo-based IDAES modeling and optimization framework. The proposed nonlinear model can be used for both simulation and optimization. To ensure its robust convergence, we further devise a rigorous, multi-level cascade initialization scheme, whose principles can further be applied towards the initialization of similar process models. The model was validated with published pilot plant data and then optimized for pilot and commercial scales with an economic objective that considers both capital and operational costs. Results show that process optimization can indeed improve the economics of this technology, leading to 15.6% yearly savings at the pilot scale compared to the baseline case considered in the study. Additional parametric analyses were performed to understand how the flue gas flowrate and CO2 concentration, as well as the target capture rate, affects the cost of capture.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.20
自引率
10.30%
发文量
199
审稿时长
4.8 months
期刊介绍: The International Journal of Greenhouse Gas Control is a peer reviewed journal focusing on scientific and engineering developments in greenhouse gas control through capture and storage at large stationary emitters in the power sector and in other major resource, manufacturing and production industries. The Journal covers all greenhouse gas emissions within the power and industrial sectors, and comprises both technical and non-technical related literature in one volume. Original research, review and comments papers are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信