Priscila Leal da Silva , Igor Leite Freire , Nazime Sales Filho
{"title":"An integrable pseudospherical equation with pseudo-peakon solutions","authors":"Priscila Leal da Silva , Igor Leite Freire , Nazime Sales Filho","doi":"10.1016/j.jde.2024.11.030","DOIUrl":null,"url":null,"abstract":"<div><div>We study an integrable equation whose solutions define a triad of one-forms describing a surface with Gaussian curvature -1. We identify a local group of diffeomorphisms that preserve these solutions and establish conserved quantities. From the symmetries, we obtain invariant solutions that provide explicit metrics for the surfaces. These solutions are unbounded and often appear in mirrored pairs. We introduce the “collage” method, which uses conserved quantities to remove unbounded parts and smoothly join the solutions, leading to weak solutions consistent with the conserved quantities. As a result we get pseudo-peakons, which are smoother than Camassa-Holm peakons. Additionally, we apply a Miura-type transformation to relate our equation to the Degasperis-Procesi equation, allowing us to recover peakon and shock-peakon solutions for it from the solutions of the other equation.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"419 ","pages":"Pages 291-323"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624007502","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study an integrable equation whose solutions define a triad of one-forms describing a surface with Gaussian curvature -1. We identify a local group of diffeomorphisms that preserve these solutions and establish conserved quantities. From the symmetries, we obtain invariant solutions that provide explicit metrics for the surfaces. These solutions are unbounded and often appear in mirrored pairs. We introduce the “collage” method, which uses conserved quantities to remove unbounded parts and smoothly join the solutions, leading to weak solutions consistent with the conserved quantities. As a result we get pseudo-peakons, which are smoother than Camassa-Holm peakons. Additionally, we apply a Miura-type transformation to relate our equation to the Degasperis-Procesi equation, allowing us to recover peakon and shock-peakon solutions for it from the solutions of the other equation.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics