{"title":"Uniform regularity for incompressible MHD equations in a bounded domain with curved boundary in 3D","authors":"Yingzhi Du, Tao Luo","doi":"10.1016/j.jde.2024.11.028","DOIUrl":null,"url":null,"abstract":"<div><div>For the initial boundary problem of the incompressible MHD equations in a bounded domain with general curved boundary in 3D with the general Navier-slip boundary conditions for the velocity field and the perfect conducting condition for the magnetic field, we establish the uniform regularity of conormal Sobolev norms and Lipschitz norms to addressing the anisotropic regularity of tangential and normal directions, which enable us to prove the vanishing dissipation limit as the viscosity and the magnetic diffusion coefficients tend to zero. We overcome the difficulties caused by the intricate interaction of boundary curvature, velocity field and magnetic fields and resolve the issue caused by the problem that the viscosity and the magnetic diffusion coefficients are not required to equal.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"419 ","pages":"Pages 175-252"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624007514","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For the initial boundary problem of the incompressible MHD equations in a bounded domain with general curved boundary in 3D with the general Navier-slip boundary conditions for the velocity field and the perfect conducting condition for the magnetic field, we establish the uniform regularity of conormal Sobolev norms and Lipschitz norms to addressing the anisotropic regularity of tangential and normal directions, which enable us to prove the vanishing dissipation limit as the viscosity and the magnetic diffusion coefficients tend to zero. We overcome the difficulties caused by the intricate interaction of boundary curvature, velocity field and magnetic fields and resolve the issue caused by the problem that the viscosity and the magnetic diffusion coefficients are not required to equal.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics