Symbolic dynamics of planar piecewise smooth vector fields

IF 2.4 2区 数学 Q1 MATHEMATICS
Tiago Carvalho , André do Amaral Antunes
{"title":"Symbolic dynamics of planar piecewise smooth vector fields","authors":"Tiago Carvalho ,&nbsp;André do Amaral Antunes","doi":"10.1016/j.jde.2024.11.031","DOIUrl":null,"url":null,"abstract":"<div><div>It is well known that many results obtained for piecewise smooth vector fields do not have an analogous for smooth vector fields and vice-versa. These differences are generated by the non-uniqueness of trajectory passing through a point. Inspired by the classical fact that one-dimensional discrete dynamic systems can produce chaotic behavior, we construct a conjugation between shift maps and piecewise smooth vector fields presenting homoclinic loops which are associated to symbols in such a way that the flow restricted to a homoclinic loop is codified with a symbol. The construction of the topological conjugation between the quoted piecewise smooth vector fields and the respective shift spaces needs several technicality which were solved considering a specific family of piecewise smooth vector fields (<span><span>Theorem A</span></span>) and then generalizing the result for an entire class of piecewise smooth vector fields (<span><span>Theorem B</span></span>). By means of the results obtained and the techniques employed, a new perspective on the study of piecewise smooth vector fields is brought to light and, through already established results for discrete dynamic systems, we will be able to obtain results regarding piecewise smooth vector fields.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"419 ","pages":"Pages 150-174"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624007538","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

It is well known that many results obtained for piecewise smooth vector fields do not have an analogous for smooth vector fields and vice-versa. These differences are generated by the non-uniqueness of trajectory passing through a point. Inspired by the classical fact that one-dimensional discrete dynamic systems can produce chaotic behavior, we construct a conjugation between shift maps and piecewise smooth vector fields presenting homoclinic loops which are associated to symbols in such a way that the flow restricted to a homoclinic loop is codified with a symbol. The construction of the topological conjugation between the quoted piecewise smooth vector fields and the respective shift spaces needs several technicality which were solved considering a specific family of piecewise smooth vector fields (Theorem A) and then generalizing the result for an entire class of piecewise smooth vector fields (Theorem B). By means of the results obtained and the techniques employed, a new perspective on the study of piecewise smooth vector fields is brought to light and, through already established results for discrete dynamic systems, we will be able to obtain results regarding piecewise smooth vector fields.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信