A note on the log-perturbed Brézis-Nirenberg problem on the hyperbolic space

IF 2.4 2区 数学 Q1 MATHEMATICS
Monideep Ghosh, Anumol Joseph, Debabrata Karmakar
{"title":"A note on the log-perturbed Brézis-Nirenberg problem on the hyperbolic space","authors":"Monideep Ghosh,&nbsp;Anumol Joseph,&nbsp;Debabrata Karmakar","doi":"10.1016/j.jde.2024.11.025","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the log-perturbed Brézis-Nirenberg problem on the hyperbolic space<span><span><span><math><mrow><msub><mrow><mi>Δ</mi></mrow><mrow><msup><mrow><mi>B</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></msub><mi>u</mi><mo>+</mo><mi>λ</mi><mi>u</mi><mo>+</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>u</mi><mo>+</mo><mi>θ</mi><mi>u</mi><mi>ln</mi><mo>⁡</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mi>u</mi><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>B</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo><mo>,</mo><mspace></mspace><mi>u</mi><mo>&gt;</mo><mn>0</mn><mspace></mspace><mtext>in</mtext><mspace></mspace><msup><mrow><mi>B</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mrow></math></span></span></span> and study the existence vs non-existence results. We show that whenever <span><math><mi>θ</mi><mo>&gt;</mo><mn>0</mn></math></span>, there exists an <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-solution, while for <span><math><mi>θ</mi><mo>&lt;</mo><mn>0</mn></math></span>, there does not exist a positive solution in a reasonably general class. Since the perturbation <span><math><mi>u</mi><mi>ln</mi><mo>⁡</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> changes sign, Pohozaev type identities do not yield any non-existence results. The main contribution of this article is obtaining an “almost” precise lower asymptotic decay estimate on the positive solutions for <span><math><mi>θ</mi><mo>&lt;</mo><mn>0</mn></math></span>, culminating in proving their non-existence assertion.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"419 ","pages":"Pages 114-149"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624007472","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the log-perturbed Brézis-Nirenberg problem on the hyperbolic spaceΔBNu+λu+|u|p1u+θulnu2=0,uH1(BN),u>0inBN, and study the existence vs non-existence results. We show that whenever θ>0, there exists an H1-solution, while for θ<0, there does not exist a positive solution in a reasonably general class. Since the perturbation ulnu2 changes sign, Pohozaev type identities do not yield any non-existence results. The main contribution of this article is obtaining an “almost” precise lower asymptotic decay estimate on the positive solutions for θ<0, culminating in proving their non-existence assertion.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信