Congsheng Bian , Shiju Liu , Wei Liu , Xiong Cheng , Xin Liu , Jin Dong , Rui Wang , Yongxin Li , Ming Guan , Qianhui Tian , Wenzhi Zhao
{"title":"Organic matter accumulation driven by land-sea interactions during the Late Cretaceous: A geochemical study of the Nenjiang Formation, Songliao Basin","authors":"Congsheng Bian , Shiju Liu , Wei Liu , Xiong Cheng , Xin Liu , Jin Dong , Rui Wang , Yongxin Li , Ming Guan , Qianhui Tian , Wenzhi Zhao","doi":"10.1016/j.orggeochem.2024.104901","DOIUrl":null,"url":null,"abstract":"<div><div>The Late Cretaceous Nenjiang Formation in the Songliao Basin presents a unique setting to examine how climate change and sea-level rise influenced organic matter accumulation. This study combines TOC analysis, Rock-Eval pyrolysis, GC–MS, GC–MS-MS, and elemental geochemistry on core samples from two wells to assess organic matter deposition before and after transgressive events. TOC values range from 0.18 to 14.63 wt%, with significant variations in hydrocarbon potential and thermal maturity. Periodic warm and cool climates triggered intermittent seawater intrusions that created anoxic conditions conducive to marine diatom and lacustrine dinoflagellate proliferation. Extended warm periods, however, suppressed dinoflagellate development and reduced paleo-productivity. The activity of methanogenic bacteria further contributed to the degradation of sedimentary organic matter, hindering its accumulation. While warm climates facilitated flood events that transported terrigenous nutrients, enhancing dinoflagellate blooms and expanding the oxygen minimum zone. These findings highlight the bio-environmental interactions that governed organic matter accumulation during transgressions, offering insights for exploration in similar sedimentary environments.</div></div>","PeriodicalId":400,"journal":{"name":"Organic Geochemistry","volume":"199 ","pages":"Article 104901"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0146638024001669","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Late Cretaceous Nenjiang Formation in the Songliao Basin presents a unique setting to examine how climate change and sea-level rise influenced organic matter accumulation. This study combines TOC analysis, Rock-Eval pyrolysis, GC–MS, GC–MS-MS, and elemental geochemistry on core samples from two wells to assess organic matter deposition before and after transgressive events. TOC values range from 0.18 to 14.63 wt%, with significant variations in hydrocarbon potential and thermal maturity. Periodic warm and cool climates triggered intermittent seawater intrusions that created anoxic conditions conducive to marine diatom and lacustrine dinoflagellate proliferation. Extended warm periods, however, suppressed dinoflagellate development and reduced paleo-productivity. The activity of methanogenic bacteria further contributed to the degradation of sedimentary organic matter, hindering its accumulation. While warm climates facilitated flood events that transported terrigenous nutrients, enhancing dinoflagellate blooms and expanding the oxygen minimum zone. These findings highlight the bio-environmental interactions that governed organic matter accumulation during transgressions, offering insights for exploration in similar sedimentary environments.
期刊介绍:
Organic Geochemistry serves as the only dedicated medium for the publication of peer-reviewed research on all phases of geochemistry in which organic compounds play a major role. The Editors welcome contributions covering a wide spectrum of subjects in the geosciences broadly based on organic chemistry (including molecular and isotopic geochemistry), and involving geology, biogeochemistry, environmental geochemistry, chemical oceanography and hydrology.
The scope of the journal includes research involving petroleum (including natural gas), coal, organic matter in the aqueous environment and recent sediments, organic-rich rocks and soils and the role of organics in the geochemical cycling of the elements.
Sedimentological, paleontological and organic petrographic studies will also be considered for publication, provided that they are geochemically oriented. Papers cover the full range of research activities in organic geochemistry, and include comprehensive review articles, technical communications, discussion/reply correspondence and short technical notes. Peer-reviews organised through three Chief Editors and a staff of Associate Editors, are conducted by well known, respected scientists from academia, government and industry. The journal also publishes reviews of books, announcements of important conferences and meetings and other matters of direct interest to the organic geochemical community.