A novel soft sensor modeling method based on gated stacked target-supervised VAE with variable weights

IF 5.4 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Liang Xu , Li Xie , Le Sun , Yuqing Cao
{"title":"A novel soft sensor modeling method based on gated stacked target-supervised VAE with variable weights","authors":"Liang Xu ,&nbsp;Li Xie ,&nbsp;Le Sun ,&nbsp;Yuqing Cao","doi":"10.1016/j.conengprac.2024.106181","DOIUrl":null,"url":null,"abstract":"<div><div>The variational autoencoder (VAE) has garnered extensive attention in the field of soft sensor modeling due to its superior capabilities in probabilistic data description and feature extraction. However, a single-layer VAE is challenging to extract higher-level features in the face of strong nonlinear process data. This paper proposes a gated stacked target-supervised VAE with variable weights (W-GSTVAE) to improve the modeling prediction performance of VAE. First, a stacked VAE is employed to enhance the feature extraction capability. In the pretraining phase, to enhance the correlation between the features and the target variable, feature learning is guided by incorporating the prediction error of target values into the loss function as well as calculating the maximum information coefficient between input and target variables. Meanwhile, in the fine-tuning phase, to make full use of shallow features, gated linear units are used to integrate the output features of each layer, fully exploiting the information from all layers. Finally, the effectiveness and superiority of the proposed model is demonstrated through two real industrial cases.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"155 ","pages":"Article 106181"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096706612400340X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The variational autoencoder (VAE) has garnered extensive attention in the field of soft sensor modeling due to its superior capabilities in probabilistic data description and feature extraction. However, a single-layer VAE is challenging to extract higher-level features in the face of strong nonlinear process data. This paper proposes a gated stacked target-supervised VAE with variable weights (W-GSTVAE) to improve the modeling prediction performance of VAE. First, a stacked VAE is employed to enhance the feature extraction capability. In the pretraining phase, to enhance the correlation between the features and the target variable, feature learning is guided by incorporating the prediction error of target values into the loss function as well as calculating the maximum information coefficient between input and target variables. Meanwhile, in the fine-tuning phase, to make full use of shallow features, gated linear units are used to integrate the output features of each layer, fully exploiting the information from all layers. Finally, the effectiveness and superiority of the proposed model is demonstrated through two real industrial cases.
一种基于门控叠加目标监督变权VAE的软测量建模方法
变分自编码器(VAE)由于其在概率数据描述和特征提取方面的优越性能,在软测量建模领域受到了广泛的关注。然而,面对强非线性过程数据,单层VAE难以提取更高级的特征。为了提高VAE的建模预测性能,提出了一种门控叠加变权目标监督VAE (W-GSTVAE)。首先,采用层叠VAE增强特征提取能力;在预训练阶段,为了增强特征与目标变量之间的相关性,将目标值的预测误差纳入损失函数,并计算输入与目标变量之间的最大信息系数来指导特征学习。同时,在微调阶段,为了充分利用浅层特征,采用门控线性单元对每一层的输出特征进行积分,充分利用各层的信息。最后,通过两个实际工业案例验证了该模型的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Control Engineering Practice
Control Engineering Practice 工程技术-工程:电子与电气
CiteScore
9.20
自引率
12.20%
发文量
183
审稿时长
44 days
期刊介绍: Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper. The scope of Control Engineering Practice matches the activities of IFAC. Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信