{"title":"A novel soft sensor modeling method based on gated stacked target-supervised VAE with variable weights","authors":"Liang Xu , Li Xie , Le Sun , Yuqing Cao","doi":"10.1016/j.conengprac.2024.106181","DOIUrl":null,"url":null,"abstract":"<div><div>The variational autoencoder (VAE) has garnered extensive attention in the field of soft sensor modeling due to its superior capabilities in probabilistic data description and feature extraction. However, a single-layer VAE is challenging to extract higher-level features in the face of strong nonlinear process data. This paper proposes a gated stacked target-supervised VAE with variable weights (W-GSTVAE) to improve the modeling prediction performance of VAE. First, a stacked VAE is employed to enhance the feature extraction capability. In the pretraining phase, to enhance the correlation between the features and the target variable, feature learning is guided by incorporating the prediction error of target values into the loss function as well as calculating the maximum information coefficient between input and target variables. Meanwhile, in the fine-tuning phase, to make full use of shallow features, gated linear units are used to integrate the output features of each layer, fully exploiting the information from all layers. Finally, the effectiveness and superiority of the proposed model is demonstrated through two real industrial cases.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"155 ","pages":"Article 106181"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096706612400340X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The variational autoencoder (VAE) has garnered extensive attention in the field of soft sensor modeling due to its superior capabilities in probabilistic data description and feature extraction. However, a single-layer VAE is challenging to extract higher-level features in the face of strong nonlinear process data. This paper proposes a gated stacked target-supervised VAE with variable weights (W-GSTVAE) to improve the modeling prediction performance of VAE. First, a stacked VAE is employed to enhance the feature extraction capability. In the pretraining phase, to enhance the correlation between the features and the target variable, feature learning is guided by incorporating the prediction error of target values into the loss function as well as calculating the maximum information coefficient between input and target variables. Meanwhile, in the fine-tuning phase, to make full use of shallow features, gated linear units are used to integrate the output features of each layer, fully exploiting the information from all layers. Finally, the effectiveness and superiority of the proposed model is demonstrated through two real industrial cases.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.