MWCNTs-Beta-Cyclodextrin-reduced graphene oxide gel based electrochemical sensor for simultaneous detection of dopamine and uric acid in human sweat samples

IF 10.7 1区 化学 Q1 CHEMISTRY, APPLIED
Muthui Martin Mwaurah , Jayaraman Mathiyarasu , A.M. Vinu Mohan
{"title":"MWCNTs-Beta-Cyclodextrin-reduced graphene oxide gel based electrochemical sensor for simultaneous detection of dopamine and uric acid in human sweat samples","authors":"Muthui Martin Mwaurah ,&nbsp;Jayaraman Mathiyarasu ,&nbsp;A.M. Vinu Mohan","doi":"10.1016/j.carbpol.2024.123060","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate determination of dopamine (DA) and uric acid (UA) in biological samples is crucial in diagnosing neurodegenerative disorders and gout, respectively. Here we report a highly sensitive and inexpensive, flexible screen-printed sensor for determining DA and UA in sweat samples. Beta-cyclodextrin-based (βCD) composite gel with reduced graphene oxide (rGO) was synthesized by self-polymerization of βCD at an optimum ratio of “good” and “poor solvent”. Multiwall carbon nanotubes (MWCNTs) were incorporated into the composite as a conductive filler. The MWCNTs-βCD-rGO gel provides selective biorecognition of DA and UA at the electrode surface through guest-host interaction. The gels were characterized by XRD, TGA, FTIR, UV–Vis, <sup>1</sup>H NMR, FESEM, XPS and optical microscopy. The flexible printed sensor showed linear DA detection in the range 0.25 to 16 μM with a correlation coefficient (R<sup>2</sup>) of 0.9890, limit of detection (LoD) of 0.08 μM and sensitivity of 3.63 μA μM<sup>−1</sup> cm<sup>−2</sup>. Similarly, UA calibration showed linear detection from 50 to 700 μM with a R<sup>2</sup> value of 0.9860, LoD of 0.078 μM and sensitivity of 0.118 μA μM<sup>−1</sup> cm<sup>−2</sup>. The SPE/MWCNTs-βCD-rGOsensor showed simultaneous determination of DA and UA from exercise induced sweat samples. The proposed sensor demonstrated excellent repeatability and satisfactory recoveries in human sweat.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"350 ","pages":"Article 123060"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724012864","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate determination of dopamine (DA) and uric acid (UA) in biological samples is crucial in diagnosing neurodegenerative disorders and gout, respectively. Here we report a highly sensitive and inexpensive, flexible screen-printed sensor for determining DA and UA in sweat samples. Beta-cyclodextrin-based (βCD) composite gel with reduced graphene oxide (rGO) was synthesized by self-polymerization of βCD at an optimum ratio of “good” and “poor solvent”. Multiwall carbon nanotubes (MWCNTs) were incorporated into the composite as a conductive filler. The MWCNTs-βCD-rGO gel provides selective biorecognition of DA and UA at the electrode surface through guest-host interaction. The gels were characterized by XRD, TGA, FTIR, UV–Vis, 1H NMR, FESEM, XPS and optical microscopy. The flexible printed sensor showed linear DA detection in the range 0.25 to 16 μM with a correlation coefficient (R2) of 0.9890, limit of detection (LoD) of 0.08 μM and sensitivity of 3.63 μA μM−1 cm−2. Similarly, UA calibration showed linear detection from 50 to 700 μM with a R2 value of 0.9860, LoD of 0.078 μM and sensitivity of 0.118 μA μM−1 cm−2. The SPE/MWCNTs-βCD-rGOsensor showed simultaneous determination of DA and UA from exercise induced sweat samples. The proposed sensor demonstrated excellent repeatability and satisfactory recoveries in human sweat.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信