{"title":"Hydrokinetic energy applications within hydropower tailrace channels: Implications, siting, and U.S. potential","authors":"Chien-Yung Tseng , Mirko Musa","doi":"10.1016/j.renene.2024.121916","DOIUrl":null,"url":null,"abstract":"<div><div>Hydropower tailrace channels are unique and attractive locations for hydrokinetic energy harvesting due to fast currents, scheduled flow releases, proximity to existing structural and electrical infrastructures, and low risk of additional environmental impacts. However, energy-extracting devices create flow resistance, inducing a small but measurable water level increase which may diminish the available hydraulic head and reduce hydropower generation, defeating the initial value proposition. This study combines a one-dimensional momentum balance approach with the backwater equation for surface-varying open channel flow to analyze the water level increase and determine the optimal turbine siting distance that maximizes the net power production (balancing hydropower loss vs. hydrokinetic gain), as a function of the channel hydraulic conditions and the hydrokinetic turbine characteristics. Finally, using a subset of sites from the U.S. hydropower fleet, we provide a high-level estimation of the hydrokinetic potential available in tailraces in the United States and discuss two case studies. This work advocates for the adoption of hydrokinetic turbines downstream of dams as an opportunity to increase energy production at existing plants and Non-Powered Dams (NPDs) with minimal structural intervention, and, alternatively, as viable sites for large-scale field testing for hydrokinetic devices.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"238 ","pages":"Article 121916"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148124019840","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Hydropower tailrace channels are unique and attractive locations for hydrokinetic energy harvesting due to fast currents, scheduled flow releases, proximity to existing structural and electrical infrastructures, and low risk of additional environmental impacts. However, energy-extracting devices create flow resistance, inducing a small but measurable water level increase which may diminish the available hydraulic head and reduce hydropower generation, defeating the initial value proposition. This study combines a one-dimensional momentum balance approach with the backwater equation for surface-varying open channel flow to analyze the water level increase and determine the optimal turbine siting distance that maximizes the net power production (balancing hydropower loss vs. hydrokinetic gain), as a function of the channel hydraulic conditions and the hydrokinetic turbine characteristics. Finally, using a subset of sites from the U.S. hydropower fleet, we provide a high-level estimation of the hydrokinetic potential available in tailraces in the United States and discuss two case studies. This work advocates for the adoption of hydrokinetic turbines downstream of dams as an opportunity to increase energy production at existing plants and Non-Powered Dams (NPDs) with minimal structural intervention, and, alternatively, as viable sites for large-scale field testing for hydrokinetic devices.
期刊介绍:
Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices.
As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.