Suwen Liu , Fanna Meng , Ruonan Sun , Yue Li , Hanchen Li , Binghao Liu
{"title":"Wheat starch-Lonicera caerulea berry polyphenols complex regulates blood glucose and improves intestinal flora in type 2 diabetic mice","authors":"Suwen Liu , Fanna Meng , Ruonan Sun , Yue Li , Hanchen Li , Binghao Liu","doi":"10.1016/j.carbpol.2024.123061","DOIUrl":null,"url":null,"abstract":"<div><div>Resistant starch (RS) reduces or delays the digestion of carbohydrates and glucose synthesis, thereby lowering postprandial blood glucose levels. The wheat starch-<em>Lonicera caerulea</em> berry polyphenols (WS-LCBP) complex was constructed using high hydrostatic pressure (HHP). The effects of intragastric administration of WS or WS-LCBP on blood glucose in T2DM model mice. RS in the composite preparation formed by HHP and 10 % LCBP at 600 MPa for 30 min increased from 7.65 % to 49.66 %. WS–LCBP formed an A + <em>V</em>-type crystal structure of the polyhydroxyl non-inclusion complex, which hindered the digestion of WS into glucose. Compared with LCBP intake, which caused 8.3 % reduction in 2-h postprandial blood glucose (<em>p <</em> 0.05), Homeostatic model assessment for insulin resistance demonstrated a 35.3 % decrease (<em>p <</em> 0.001) with WS-LCBP administration. Western blotting demonstrated that exposure to WS-LCBP activated the GLP-1R/PI3K/AKT signaling pathway in the liver tissue of T2DM mice, reducing insulin resistance. Furthermore, the concentration of short-chain fatty acids was markedly elevated. The structure and abundance of the intestinal flora were enhanced. The WS-LCBP complex demonstrated a more pronounced improvement than LCBP supplementation alone. This study offers a novel perspective and theoretical foundation for the regulation of postprandial blood glucose levels by polyphenol starch-based food biomacromolecules and their potential applications in starchy foods.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"351 ","pages":"Article 123061"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724012876","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Resistant starch (RS) reduces or delays the digestion of carbohydrates and glucose synthesis, thereby lowering postprandial blood glucose levels. The wheat starch-Lonicera caerulea berry polyphenols (WS-LCBP) complex was constructed using high hydrostatic pressure (HHP). The effects of intragastric administration of WS or WS-LCBP on blood glucose in T2DM model mice. RS in the composite preparation formed by HHP and 10 % LCBP at 600 MPa for 30 min increased from 7.65 % to 49.66 %. WS–LCBP formed an A + V-type crystal structure of the polyhydroxyl non-inclusion complex, which hindered the digestion of WS into glucose. Compared with LCBP intake, which caused 8.3 % reduction in 2-h postprandial blood glucose (p < 0.05), Homeostatic model assessment for insulin resistance demonstrated a 35.3 % decrease (p < 0.001) with WS-LCBP administration. Western blotting demonstrated that exposure to WS-LCBP activated the GLP-1R/PI3K/AKT signaling pathway in the liver tissue of T2DM mice, reducing insulin resistance. Furthermore, the concentration of short-chain fatty acids was markedly elevated. The structure and abundance of the intestinal flora were enhanced. The WS-LCBP complex demonstrated a more pronounced improvement than LCBP supplementation alone. This study offers a novel perspective and theoretical foundation for the regulation of postprandial blood glucose levels by polyphenol starch-based food biomacromolecules and their potential applications in starchy foods.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.