Neumann problem for fractional Ginzburg-Landau equation on a upper- right quarter plane

IF 2.4 2区 数学 Q1 MATHEMATICS
J.F. Carreño-Diaz, E.I. Kaikina
{"title":"Neumann problem for fractional Ginzburg-Landau equation on a upper- right quarter plane","authors":"J.F. Carreño-Diaz,&nbsp;E.I. Kaikina","doi":"10.1016/j.jde.2024.11.033","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the initial-boundary value problem for the Ginzburg-Landau equation with fractional Laplacian on a upper-right quarter plane.</div><div>We study the main questions of the theory of IBV- problems for nonlocal equations: the existence and uniqueness of a solution, the asymptotic behavior of the solution for large time and the influence of initial and boundary data on the basic properties of the solution. We generalize the concept of the well-posedness of IBV- problem in the Sobolev spaces to the case of a Neumann type of boundary data. We also give optimal relations between the orders of the Sobolev spaces to which the initial and boundary data belong. The lower order compatibility conditions between initial and boundary data are also discussed.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"418 ","pages":"Pages 258-304"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624007551","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the initial-boundary value problem for the Ginzburg-Landau equation with fractional Laplacian on a upper-right quarter plane.
We study the main questions of the theory of IBV- problems for nonlocal equations: the existence and uniqueness of a solution, the asymptotic behavior of the solution for large time and the influence of initial and boundary data on the basic properties of the solution. We generalize the concept of the well-posedness of IBV- problem in the Sobolev spaces to the case of a Neumann type of boundary data. We also give optimal relations between the orders of the Sobolev spaces to which the initial and boundary data belong. The lower order compatibility conditions between initial and boundary data are also discussed.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信