Synthesis, (bio)degradation, and utilization of starch-derived biopolymers in defined hard waters

IF 10.7 1区 化学 Q1 CHEMISTRY, APPLIED
Adrián Matencio , David Rupérez-Cebolla , Edoardo Fioravanti , Daniele dalla Pria , Claudio Cecone , Filomena Silva , Francesco Trotta
{"title":"Synthesis, (bio)degradation, and utilization of starch-derived biopolymers in defined hard waters","authors":"Adrián Matencio ,&nbsp;David Rupérez-Cebolla ,&nbsp;Edoardo Fioravanti ,&nbsp;Daniele dalla Pria ,&nbsp;Claudio Cecone ,&nbsp;Filomena Silva ,&nbsp;Francesco Trotta","doi":"10.1016/j.carbpol.2024.123047","DOIUrl":null,"url":null,"abstract":"<div><div>Climate change is causing a change in local rainfall, which generally brings with it a reduction in rainfall and, consequently, an increase in water hardness. This study explores the suitability and stability of various dextrin-derived polymers for cation removal in simulated hard water conditions. Thermal analysis and Fourier-transform infrared spectroscopy confirm the polymers' thermal stability and proper formation. Biodegradability assessments reveal KLEPTOSE®LINECAPS (LC) and GLUCIDEX2® (Glu2) dextrin with pyromellitic dianhydride (PMDA) derivatives have higher durability as they were able to endure enzymatic activity. Adsorption experiments at 300 and 600 ppm indicate significant variations influenced by monomer and crosslinker types, with linear monomers demonstrating superior performance. Notably, different crosslinkers exhibit varying affinities for calcium and magnesium ions, with PMDA derivatives excelling for magnesium and citric acid (CA) derivatives for calcium. Kinetic and isotherm studies reveal a favorable trend towards quasi-second-order kinetics and Freundlich isotherm models, attributed to cavity heterogeneity and diverse attachment points as evidenced in existing literature. These findings suggest promising applications for these polymers, traditionally employed for organic contaminant removal, as additional filters to mitigate water hardness.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"350 ","pages":"Article 123047"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724012736","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Climate change is causing a change in local rainfall, which generally brings with it a reduction in rainfall and, consequently, an increase in water hardness. This study explores the suitability and stability of various dextrin-derived polymers for cation removal in simulated hard water conditions. Thermal analysis and Fourier-transform infrared spectroscopy confirm the polymers' thermal stability and proper formation. Biodegradability assessments reveal KLEPTOSE®LINECAPS (LC) and GLUCIDEX2® (Glu2) dextrin with pyromellitic dianhydride (PMDA) derivatives have higher durability as they were able to endure enzymatic activity. Adsorption experiments at 300 and 600 ppm indicate significant variations influenced by monomer and crosslinker types, with linear monomers demonstrating superior performance. Notably, different crosslinkers exhibit varying affinities for calcium and magnesium ions, with PMDA derivatives excelling for magnesium and citric acid (CA) derivatives for calcium. Kinetic and isotherm studies reveal a favorable trend towards quasi-second-order kinetics and Freundlich isotherm models, attributed to cavity heterogeneity and diverse attachment points as evidenced in existing literature. These findings suggest promising applications for these polymers, traditionally employed for organic contaminant removal, as additional filters to mitigate water hardness.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信