Dawei Cheng , Xinyu Huang , Caihong Zhang , Ben Shao , Xueling Li , Meiqing Li
{"title":"Impact of black soybean peptides on intestinal barrier function and gut microbiota in hypertensive mice","authors":"Dawei Cheng , Xinyu Huang , Caihong Zhang , Ben Shao , Xueling Li , Meiqing Li","doi":"10.1016/j.jff.2024.106608","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of the present study was to examine the antihypertensive effect of black soybean peptides (BSP) and investigate the role of these peptides in ameliorating hypertension-induced intestinal damage and modulating gut microbiota. The findings demonstrated that BSP could significantly reduce the blood pressure of mice with diet-induced hypertension (<em>P</em> < 0.001). Simultaneously, BSP effectively inhibited the production of pro-inflammatory factors (IL-17 and TNF-α) and increased the levels of an anti-inflammatory factor (IL-10) in the colon of mouse models of hypertension. Additionally, BSP up-regulated the gene expression of intestinal barrier factors <em>ZO-1</em>, <em>Occludin</em>, and <em>MUC-2</em>, and alleviated the hypertension-induced inflammatory infiltration of colon tissue. Furthermore, the peptides increased the levels of short-chain fatty acids (SCFAs) in the feces and up-regulated the protein expression of the SCFA receptor GPR41/43. The analysis of intestinal microbes showed that BSP could modulate the richness and diversity of the intestinal microbiota in mouse models of hypertension, increase the abundance of beneficial bacteria, decrease the abundance of harmful bacteria, and promote the homeostasis of the imbalanced intestinal microbiota. Notably, BSP exerted a significant protective effect against L-NAME-induced hypertension in mice, demonstrating good outcomes with respect to blood pressure regulation, intestinal protection, and intestinal microbiota balance. Therefore, BSP may ameliorate the harm caused by hypertension and could aid in the prevention of hypertension as a dietary intervention.</div></div>","PeriodicalId":360,"journal":{"name":"Journal of Functional Foods","volume":"123 ","pages":"Article 106608"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Foods","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S175646462400611X","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of the present study was to examine the antihypertensive effect of black soybean peptides (BSP) and investigate the role of these peptides in ameliorating hypertension-induced intestinal damage and modulating gut microbiota. The findings demonstrated that BSP could significantly reduce the blood pressure of mice with diet-induced hypertension (P < 0.001). Simultaneously, BSP effectively inhibited the production of pro-inflammatory factors (IL-17 and TNF-α) and increased the levels of an anti-inflammatory factor (IL-10) in the colon of mouse models of hypertension. Additionally, BSP up-regulated the gene expression of intestinal barrier factors ZO-1, Occludin, and MUC-2, and alleviated the hypertension-induced inflammatory infiltration of colon tissue. Furthermore, the peptides increased the levels of short-chain fatty acids (SCFAs) in the feces and up-regulated the protein expression of the SCFA receptor GPR41/43. The analysis of intestinal microbes showed that BSP could modulate the richness and diversity of the intestinal microbiota in mouse models of hypertension, increase the abundance of beneficial bacteria, decrease the abundance of harmful bacteria, and promote the homeostasis of the imbalanced intestinal microbiota. Notably, BSP exerted a significant protective effect against L-NAME-induced hypertension in mice, demonstrating good outcomes with respect to blood pressure regulation, intestinal protection, and intestinal microbiota balance. Therefore, BSP may ameliorate the harm caused by hypertension and could aid in the prevention of hypertension as a dietary intervention.
期刊介绍:
Journal of Functional Foods continues with the same aims and scope, editorial team, submission system and rigorous peer review. We give authors the possibility to publish their top-quality papers in a well-established leading journal in the food and nutrition fields. The Journal will keep its rigorous criteria to screen high impact research addressing relevant scientific topics and performed by sound methodologies.
The Journal of Functional Foods aims to bring together the results of fundamental and applied research into healthy foods and biologically active food ingredients.
The Journal is centered in the specific area at the boundaries among food technology, nutrition and health welcoming papers having a good interdisciplinary approach. The Journal will cover the fields of plant bioactives; dietary fibre, probiotics; functional lipids; bioactive peptides; vitamins, minerals and botanicals and other dietary supplements. Nutritional and technological aspects related to the development of functional foods and beverages are of core interest to the journal. Experimental works dealing with food digestion, bioavailability of food bioactives and on the mechanisms by which foods and their components are able to modulate physiological parameters connected with disease prevention are of particular interest as well as those dealing with personalized nutrition and nutritional needs in pathological subjects.