Transition metal ions-chelated COFs derived bifunctional oxygen catalysts for rechargeable Zn-air batteries

IF 3.2 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Li Kang, Nana Zhang, Fei Zhao, Jilan Long
{"title":"Transition metal ions-chelated COFs derived bifunctional oxygen catalysts for rechargeable Zn-air batteries","authors":"Li Kang,&nbsp;Nana Zhang,&nbsp;Fei Zhao,&nbsp;Jilan Long","doi":"10.1016/j.jssc.2024.125114","DOIUrl":null,"url":null,"abstract":"<div><div>Improving energy conversion efficiency and battery cycle stability is an essential goal in energy conversion and storage, while a critical factor in achieving this goal is the design of effective bifunctional catalysts. The covalent organic framework is a new type of high molecular material that can be employed as an ideal template for quantitative chelate metal ions to synthesize highly efficient bifunctional catalysts with high dispersion metal active sites. In this work, the Fe<sub>2</sub>Ni<sub>1</sub>/NiFe<sub>2</sub>O<sub>4</sub>@NCG bifunctional catalysts are constructed by employing metal-chelated COFs and MA/GO mixture as primary precursors combined with a high-temperature pyrolysis strategy. COFs and MA serve as chelators and spacers to improve the dispersion of metal nanoparticles. The Fe<sub>2</sub>Ni<sub>1</sub>/NiFe<sub>2</sub>O<sub>4</sub>@NCG composite exhibits a large BET surface area and hierarchical structure with plentiful nanoparticles on the carbon layers. HRTEM proves the coexistence of FeNi and NiFe<sub>2</sub>O<sub>4</sub>. The optimal Fe<sub>2</sub>Ni<sub>1</sub>/NiFe<sub>2</sub>O<sub>4</sub>@NCG-800 composite shows satisfactory catalytic O<sub>2</sub> performance, providing a half-wave potential of 0.857 V for ORR and an overpotential of 244 mV for OER. Meanwhile, DFT calculations prove that electron redistribution occurs at the interface between FeNi and NiFe<sub>2</sub>O<sub>4</sub> after combination. The Fe<sub>2</sub>Ni<sub>1</sub>/NiFe<sub>2</sub>O<sub>4</sub>@NCG-based liquid and solid-state ZABs perform very well, exhibiting large specific capacities (796 mAh·g<sup>−1</sup> for aqueous ZAB; 742 mAh·g<sup>−1</sup> for solid-state ZAB) and stable charge-discharge cycle performance (300 h for aqueous ZAB; 180 h for solid-state ZAB).</div></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"342 ","pages":"Article 125114"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022459624005681","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Improving energy conversion efficiency and battery cycle stability is an essential goal in energy conversion and storage, while a critical factor in achieving this goal is the design of effective bifunctional catalysts. The covalent organic framework is a new type of high molecular material that can be employed as an ideal template for quantitative chelate metal ions to synthesize highly efficient bifunctional catalysts with high dispersion metal active sites. In this work, the Fe2Ni1/NiFe2O4@NCG bifunctional catalysts are constructed by employing metal-chelated COFs and MA/GO mixture as primary precursors combined with a high-temperature pyrolysis strategy. COFs and MA serve as chelators and spacers to improve the dispersion of metal nanoparticles. The Fe2Ni1/NiFe2O4@NCG composite exhibits a large BET surface area and hierarchical structure with plentiful nanoparticles on the carbon layers. HRTEM proves the coexistence of FeNi and NiFe2O4. The optimal Fe2Ni1/NiFe2O4@NCG-800 composite shows satisfactory catalytic O2 performance, providing a half-wave potential of 0.857 V for ORR and an overpotential of 244 mV for OER. Meanwhile, DFT calculations prove that electron redistribution occurs at the interface between FeNi and NiFe2O4 after combination. The Fe2Ni1/NiFe2O4@NCG-based liquid and solid-state ZABs perform very well, exhibiting large specific capacities (796 mAh·g−1 for aqueous ZAB; 742 mAh·g−1 for solid-state ZAB) and stable charge-discharge cycle performance (300 h for aqueous ZAB; 180 h for solid-state ZAB).

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Solid State Chemistry
Journal of Solid State Chemistry 化学-无机化学与核化学
CiteScore
6.00
自引率
9.10%
发文量
848
审稿时长
25 days
期刊介绍: Covering major developments in the field of solid state chemistry and related areas such as ceramics and amorphous materials, the Journal of Solid State Chemistry features studies of chemical, structural, thermodynamic, electronic, magnetic, and optical properties and processes in solids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信