Fractional maximal operator in hyperbolic spaces

IF 1.2 3区 数学 Q1 MATHEMATICS
Gonzalo Ibañez-Firnkorn, Emanuel Ramadori
{"title":"Fractional maximal operator in hyperbolic spaces","authors":"Gonzalo Ibañez-Firnkorn,&nbsp;Emanuel Ramadori","doi":"10.1016/j.jmaa.2024.129079","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we introduce the fractional maximal operator on the Hyperbolic space, a non-doubling measure space, and study its weighted boundedness. Motivated by the weighted boundedness of the Hardy-Littlewood maximal studied by Antezana and Ombrosi in <span><span>[1]</span></span>, we give conditions for the weak type and strong type estimate for fractional maximal. Also, we present examples of weights for which the fractional maximal operator satisfies weak type <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> inequality but strong type <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> inequality fails.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"544 2","pages":"Article 129079"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24010011","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we introduce the fractional maximal operator on the Hyperbolic space, a non-doubling measure space, and study its weighted boundedness. Motivated by the weighted boundedness of the Hardy-Littlewood maximal studied by Antezana and Ombrosi in [1], we give conditions for the weak type and strong type estimate for fractional maximal. Also, we present examples of weights for which the fractional maximal operator satisfies weak type (p,q) inequality but strong type (p,q) inequality fails.
双曲空间中的分数极大算子
本文在非加倍测度空间双曲空间上引入分数极大算子,并研究了其加权有界性。利用Antezana和Ombrosi在[1]中研究的Hardy-Littlewood极大值的加权有界性,给出了分数极大值的弱型估计和强型估计的条件。此外,我们还给出了分数极大算子满足弱型(p,q)不等式而强型(p,q)不等式不满足的权重例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信