Haitao Lin , Hua Zhang , Jianwen Huo , Jialong Li , Huan Zhang , Yonglong Li
{"title":"High-precision 3D reconstruction of underwater concrete using integrated line structured light and stereo vision","authors":"Haitao Lin , Hua Zhang , Jianwen Huo , Jialong Li , Huan Zhang , Yonglong Li","doi":"10.1016/j.autcon.2024.105883","DOIUrl":null,"url":null,"abstract":"<div><div>The absorption and refraction of light by water made high-precision 3D (three-dimensional) reconstruction of underwater concrete a challenging task. This paper proposed a 3D reconstruction method combining line structured light and stereo vision. To improve the reconstruction accuracy, the epipolar constraint was introduced in the light plane calibration process to limit the fringe noise data during calibration matching. A color camera and a monochrome camera were used simultaneously to characterize the real underwater 3D environment. After matching the left and right images, the color information of the color image was retained, and the color information of the point cloud was enhanced. Finally, experiments were conducted in a water tank, and the results indicated that the 3D reconstruction error for underwater concrete was 4.48 %. Moreover, the color enhancement of the point cloud achieved the highest overall scores across the four no-reference underwater image quality assessment metrics.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"169 ","pages":"Article 105883"},"PeriodicalIF":9.6000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580524006198","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The absorption and refraction of light by water made high-precision 3D (three-dimensional) reconstruction of underwater concrete a challenging task. This paper proposed a 3D reconstruction method combining line structured light and stereo vision. To improve the reconstruction accuracy, the epipolar constraint was introduced in the light plane calibration process to limit the fringe noise data during calibration matching. A color camera and a monochrome camera were used simultaneously to characterize the real underwater 3D environment. After matching the left and right images, the color information of the color image was retained, and the color information of the point cloud was enhanced. Finally, experiments were conducted in a water tank, and the results indicated that the 3D reconstruction error for underwater concrete was 4.48 %. Moreover, the color enhancement of the point cloud achieved the highest overall scores across the four no-reference underwater image quality assessment metrics.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.