A unified mixed hp-finite element framework for modeling laser pulse heating processes in the refined thermodynamics

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Balázs Tóth
{"title":"A unified mixed hp-finite element framework for modeling laser pulse heating processes in the refined thermodynamics","authors":"Balázs Tóth","doi":"10.1016/j.ijheatmasstransfer.2024.126456","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, new multi-field variational formulations are derived for solving the following thermodynamic models: (i) ballistic-conductive system, (ii) the Guyer–Krumhansl heat conduction model and (iii) the Maxwell–Cattaneo–Vernotte model as some models of the extended irreversible thermodynamic, handling the temperature, the heat flux and the current density of heat flux as independent field variables. Based on these variational approaches as mathematical background, a family of mixed <span><math><mrow><mi>h</mi><mi>p</mi></mrow></math></span>-version finite element methods, which is capable of reliably and efficiently modeling the temperature responses, is designed. The solutions provided by the constructed <span><math><mrow><mi>h</mi><mi>p</mi></mrow></math></span>-FE framework are illustrated for the following two heat pulse experiments as benchmark problems: (1) sinusoid laser pulse heating process and (2) rectangular (step-like) laser pulse train. It is shown that stable, oscillation-free temperature response functions can be obtained not only for the ballistic-conductive system and the Maxwell–Cattaneo–Vernotte model but also for the under-diffuse and the over-diffuse parameter settings of the Guyer–Krumhansl heat conduction model.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"238 ","pages":"Article 126456"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931024012845","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, new multi-field variational formulations are derived for solving the following thermodynamic models: (i) ballistic-conductive system, (ii) the Guyer–Krumhansl heat conduction model and (iii) the Maxwell–Cattaneo–Vernotte model as some models of the extended irreversible thermodynamic, handling the temperature, the heat flux and the current density of heat flux as independent field variables. Based on these variational approaches as mathematical background, a family of mixed hp-version finite element methods, which is capable of reliably and efficiently modeling the temperature responses, is designed. The solutions provided by the constructed hp-FE framework are illustrated for the following two heat pulse experiments as benchmark problems: (1) sinusoid laser pulse heating process and (2) rectangular (step-like) laser pulse train. It is shown that stable, oscillation-free temperature response functions can be obtained not only for the ballistic-conductive system and the Maxwell–Cattaneo–Vernotte model but also for the under-diffuse and the over-diffuse parameter settings of the Guyer–Krumhansl heat conduction model.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
13.50%
发文量
1319
审稿时长
41 days
期刊介绍: International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems. Topics include: -New methods of measuring and/or correlating transport-property data -Energy engineering -Environmental applications of heat and/or mass transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信