A semi-empirical model of frost formation on a cryogenic surface cooled from ambient temperature under forced convection condition

IF 3.5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Shi Shangguan , Lei Wang , Peijie Sun , Bin Wang , Bowen Liu , Yanzhong Li
{"title":"A semi-empirical model of frost formation on a cryogenic surface cooled from ambient temperature under forced convection condition","authors":"Shi Shangguan ,&nbsp;Lei Wang ,&nbsp;Peijie Sun ,&nbsp;Bin Wang ,&nbsp;Bowen Liu ,&nbsp;Yanzhong Li","doi":"10.1016/j.ijrefrig.2024.11.025","DOIUrl":null,"url":null,"abstract":"<div><div>In most practical occasion, frost is formed on cold surface which is cooled from the ambient temperature. Although the initial cooling stage may account for a small proportion in the whole frosting process, the effects of the initial cooling on frosting characteristics could not be overlooked. In this paper, a semi-empirical model of cryogenic frosting involving the initial cooling process under forced convection is established by employing frost properties correlations and heat and mass balance analysis. The frost thickness calculated by the proposed semi-empirical model showed good agreement with experimental data within a maximum error of 15 %. Within the constraints of correlation validity, this model is applicable to conditions where ambient temperatures range from 10 °C to 30 °C, air flow Reynolds numbers span from 7 × 10<sup>4</sup> to 1.5 × 10<sup>5</sup>, air humidity varies between 3.5 g/kg and 18 g/kg, and initial cooling durations extend from 15 min to 40 min, and the final wall temperature is decreased to about 80K. The results indicate that frost thickness increases with rising ambient temperature, air humidity, and airflow velocity. Notably, higher rates of frost growth are observed during the initial cooling under conditions of elevated air humidity or increased airflow velocity. The trend in frost mass closely mirrors that of frost thickness, however, a more pronounced increase in frost mass occurs with increasing ambient temperature. Furthermore, extending the duration of initial cooling could accelerate the frost growth rate and cause a higher frost surface temperature.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"170 ","pages":"Pages 124-134"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724004146","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In most practical occasion, frost is formed on cold surface which is cooled from the ambient temperature. Although the initial cooling stage may account for a small proportion in the whole frosting process, the effects of the initial cooling on frosting characteristics could not be overlooked. In this paper, a semi-empirical model of cryogenic frosting involving the initial cooling process under forced convection is established by employing frost properties correlations and heat and mass balance analysis. The frost thickness calculated by the proposed semi-empirical model showed good agreement with experimental data within a maximum error of 15 %. Within the constraints of correlation validity, this model is applicable to conditions where ambient temperatures range from 10 °C to 30 °C, air flow Reynolds numbers span from 7 × 104 to 1.5 × 105, air humidity varies between 3.5 g/kg and 18 g/kg, and initial cooling durations extend from 15 min to 40 min, and the final wall temperature is decreased to about 80K. The results indicate that frost thickness increases with rising ambient temperature, air humidity, and airflow velocity. Notably, higher rates of frost growth are observed during the initial cooling under conditions of elevated air humidity or increased airflow velocity. The trend in frost mass closely mirrors that of frost thickness, however, a more pronounced increase in frost mass occurs with increasing ambient temperature. Furthermore, extending the duration of initial cooling could accelerate the frost growth rate and cause a higher frost surface temperature.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
12.80%
发文量
363
审稿时长
3.7 months
期刊介绍: The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling. As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews. Papers are published in either English or French with the IIR news section in both languages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信