Digital twin-assisted fault diagnosis framework for rolling bearings under imbalanced data

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zhen Ming, Baoping Tang, Lei Deng, Qichao Yang, Qikang Li
{"title":"Digital twin-assisted fault diagnosis framework for rolling bearings under imbalanced data","authors":"Zhen Ming,&nbsp;Baoping Tang,&nbsp;Lei Deng,&nbsp;Qichao Yang,&nbsp;Qikang Li","doi":"10.1016/j.asoc.2024.112528","DOIUrl":null,"url":null,"abstract":"<div><div>The application of deep learning-based fault diagnosis methods is constrained by the imbalanced data. Recently, many studies have suggested integrating dynamic model responses into the training process to address data imbalances. However, significant distribution discrepancies exist between dynamic model responses and real measured data, resulting in suboptimal performance. To address this challenge, this research proposes a digital twin-assisted framework for rolling bearings fault diagnosis under imbalanced data, which minimizes the distribution discrepancies between dynamic model responses and real measured data through information and feature transfer. Firstly, a Digital Twin-assisted Data Fusion Strategy (DTDFS) is proposed to facilitate information transfer from physical entities to dynamic models, generating digital twin data for data augmentation. Subsequently, a Frequency Filter Subdomain Adaptation Network (FFSAN) is proposed to achieve feature transfer between twin data and measured data. Finally, experimental results and engineering applications demonstrate that the proposed framework significantly outperforms existing imbalanced fault diagnosis methods, which is crucial to the application of deep learning-based fault diagnosis in industrial settings.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"168 ","pages":"Article 112528"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494624013024","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The application of deep learning-based fault diagnosis methods is constrained by the imbalanced data. Recently, many studies have suggested integrating dynamic model responses into the training process to address data imbalances. However, significant distribution discrepancies exist between dynamic model responses and real measured data, resulting in suboptimal performance. To address this challenge, this research proposes a digital twin-assisted framework for rolling bearings fault diagnosis under imbalanced data, which minimizes the distribution discrepancies between dynamic model responses and real measured data through information and feature transfer. Firstly, a Digital Twin-assisted Data Fusion Strategy (DTDFS) is proposed to facilitate information transfer from physical entities to dynamic models, generating digital twin data for data augmentation. Subsequently, a Frequency Filter Subdomain Adaptation Network (FFSAN) is proposed to achieve feature transfer between twin data and measured data. Finally, experimental results and engineering applications demonstrate that the proposed framework significantly outperforms existing imbalanced fault diagnosis methods, which is crucial to the application of deep learning-based fault diagnosis in industrial settings.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信