{"title":"Enhancing the performance of CNN models for pneumonia and skin cancer detection using novel fractional activation function","authors":"Meshach Kumar, Utkal Mehta","doi":"10.1016/j.asoc.2024.112500","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a novel Riemann–Liouville (RL) conformable fractional derivative based Adaptable-Shifted-Fractional-Rectified-Linear-Unit, briefly called <span><math><mrow><msup><mrow></mrow><mrow><mi>R</mi><mi>L</mi></mrow></msup><mi>ASFReLU</mi></mrow></math></span>, and evaluates its efficacy in enhancing the performance of convolutional neural network (CNN) models for pneumonia and skin cancer detection. The study conducts a comprehensive comparative analysis against traditional activation functions and state-of-the-art CNN architectures. The results show that <span><math><mrow><msup><mrow></mrow><mrow><mi>R</mi><mi>L</mi></mrow></msup><mi>ASFReLU</mi></mrow></math></span> consistently outperforms other functions, achieving higher accuracy. Comparative evaluations with various neural network architectures reveal that the model equipped with <span><math><mrow><msup><mrow></mrow><mrow><mi>R</mi><mi>L</mi></mrow></msup><mi>ASFReLU</mi></mrow></math></span> exhibits superior performance despite its simplicity and fewer trainable parameters, highlighting its efficiency and effectiveness. The findings suggest that <span><math><mrow><msup><mrow></mrow><mrow><mi>R</mi><mi>L</mi></mrow></msup><mi>ASFReLU</mi></mrow></math></span> holds promise in improving diagnostic accuracy and efficiency in medical imaging applications, contributing to advancements in healthcare technology and facilitating better patient care. The proposed fractional nonlinear transformation can offer high performance with reduced computational cost, making it practical for deployment in healthcare settings.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"168 ","pages":"Article 112500"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494624012742","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a novel Riemann–Liouville (RL) conformable fractional derivative based Adaptable-Shifted-Fractional-Rectified-Linear-Unit, briefly called , and evaluates its efficacy in enhancing the performance of convolutional neural network (CNN) models for pneumonia and skin cancer detection. The study conducts a comprehensive comparative analysis against traditional activation functions and state-of-the-art CNN architectures. The results show that consistently outperforms other functions, achieving higher accuracy. Comparative evaluations with various neural network architectures reveal that the model equipped with exhibits superior performance despite its simplicity and fewer trainable parameters, highlighting its efficiency and effectiveness. The findings suggest that holds promise in improving diagnostic accuracy and efficiency in medical imaging applications, contributing to advancements in healthcare technology and facilitating better patient care. The proposed fractional nonlinear transformation can offer high performance with reduced computational cost, making it practical for deployment in healthcare settings.
期刊介绍:
Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities.
Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.