Tongxu Wang , Zejiao Dong , Cheng Cao , Jie Zhou , Yuhang Meng , Weiwen Quan
{"title":"Characterization of aircraft landing impact loads: Effects on vertical tire-pavement contact characteristics and pavement performance","authors":"Tongxu Wang , Zejiao Dong , Cheng Cao , Jie Zhou , Yuhang Meng , Weiwen Quan","doi":"10.1016/j.conbuildmat.2024.139365","DOIUrl":null,"url":null,"abstract":"<div><div>The comprehensive understanding of the mechanistic behavior of airport pavements under aircraft landing loads is essential for ensuring safety and durability. Addressing the limited understanding on the interaction between aircraft landing gear and airport pavement during landing, this study proposed a measurement method for the vertical dynamic contact characteristics of tire-pavement interface and internal dynamic responses based on a laboratory dynamic test device. This involved the experimental design and testing method for the dynamic characteristics of landing gear landing loads, utilizing the Tekscan pressure measurement system to evaluate the vertical dynamic contact characteristics between the aircraft tires and pavement during landing. Through comparative analysis with the static results, the study revealed the importance of landing load measurements for mechanical response analysis and durability design of airport pavements. Additionally, the study investigated the dynamic response of airport pavements under different simulated aircraft landing speeds and weights, and further quantified the impact effects of aircraft landing loads on airport pavements. The results show that the vertical tire-pavement contact characteristics under landing impact are significantly different from those under static conditions, and need to be considered. The proposed quantitative equations with acceptable good fitting effect provided more accurate and efficient vertical load inputs for numerical simulation and durability design of airport pavements, which laid the foundation for understanding the failure mechanisms of airport pavement and enhancing the safety of aircraft and airport operation.</div></div>","PeriodicalId":288,"journal":{"name":"Construction and Building Materials","volume":"457 ","pages":"Article 139365"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction and Building Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950061824045070","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The comprehensive understanding of the mechanistic behavior of airport pavements under aircraft landing loads is essential for ensuring safety and durability. Addressing the limited understanding on the interaction between aircraft landing gear and airport pavement during landing, this study proposed a measurement method for the vertical dynamic contact characteristics of tire-pavement interface and internal dynamic responses based on a laboratory dynamic test device. This involved the experimental design and testing method for the dynamic characteristics of landing gear landing loads, utilizing the Tekscan pressure measurement system to evaluate the vertical dynamic contact characteristics between the aircraft tires and pavement during landing. Through comparative analysis with the static results, the study revealed the importance of landing load measurements for mechanical response analysis and durability design of airport pavements. Additionally, the study investigated the dynamic response of airport pavements under different simulated aircraft landing speeds and weights, and further quantified the impact effects of aircraft landing loads on airport pavements. The results show that the vertical tire-pavement contact characteristics under landing impact are significantly different from those under static conditions, and need to be considered. The proposed quantitative equations with acceptable good fitting effect provided more accurate and efficient vertical load inputs for numerical simulation and durability design of airport pavements, which laid the foundation for understanding the failure mechanisms of airport pavement and enhancing the safety of aircraft and airport operation.
期刊介绍:
Construction and Building Materials offers an international platform for sharing innovative and original research and development in the realm of construction and building materials, along with their practical applications in new projects and repair practices. The journal publishes a diverse array of pioneering research and application papers, detailing laboratory investigations and, to a limited extent, numerical analyses or reports on full-scale projects. Multi-part papers are discouraged.
Additionally, Construction and Building Materials features comprehensive case studies and insightful review articles that contribute to new insights in the field. Our focus is on papers related to construction materials, excluding those on structural engineering, geotechnics, and unbound highway layers. Covered materials and technologies encompass cement, concrete reinforcement, bricks and mortars, additives, corrosion technology, ceramics, timber, steel, polymers, glass fibers, recycled materials, bamboo, rammed earth, non-conventional building materials, bituminous materials, and applications in railway materials.