Spencer C. Barnes , Jesse W. Streicher , Ajay Krish, Ronald K. Hanson
{"title":"Development and demonstration of a two-color nitric oxide vibrational temperature diagnostic using spectrally-resolved ultraviolet laser absorption","authors":"Spencer C. Barnes , Jesse W. Streicher , Ajay Krish, Ronald K. Hanson","doi":"10.1016/j.jqsrt.2024.109275","DOIUrl":null,"url":null,"abstract":"<div><div>Development of a new ultraviolet (UV) laser absorption diagnostic has enabled the probing of nitric oxide (NO) in the second excited vibrational state (v” = 2) for inferences of quantum-state-specific number density and vibrational temperature time-histories. Spectroscopic modeling informed the selection of the new 246.3222 nm wavelength, as this wavelength exhibits high sensitivity for thermometry in the 2000 – 8000 K temperature range. This 246.3222 nm absorption feature consists of contributions from the <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>12</mn></mrow></msub><mrow><mo>(</mo><mn>24</mn><mo>.</mo><mn>5</mn><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>11</mn></mrow></msub><mrow><mo>(</mo><mn>15</mn><mo>.</mo><mn>5</mn><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mn>22</mn></mrow></msub><mrow><mo>(</mo><mn>24</mn><mo>.</mo><mn>5</mn><mo>)</mo></mrow></mrow></math></span>, and <span><math><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mn>21</mn></mrow></msub><mrow><mo>(</mo><mn>15</mn><mo>.</mo><mn>5</mn><mo>)</mo></mrow></mrow></math></span> transitions all originating in the v” = 2 state. Absorption cross-sections at this selected wavelength were measured in reflected shock experiments for sweeps of both wavelength and temperature. The wavelength sweep investigated cross-sections over a 246.3202 – 246.3246 nm range at 4590 K, and the temperature sweep measured cross-sections over a 2500 – 7500 K range at the peak of the absorption feature (246.3222 nm). Cross-section results agree with the Stanford NO gamma-band model to within <span><math><mo>±</mo></math></span>5%, confirming the use of the model for subsequent thermometry studies. Thermometry was demonstrated in reflected shock experiments probing the vibrational relaxation and chemical reactions in 2% NO diluted in either argon (Ar) or nitrogen (N<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>). These experiments leverage previous UV laser absorption diagnostics that probe NO in the ground vibrational state (v” = 0) using the R<sub>11</sub>(26.5), R<sub>12</sub>(34.5), Q<sub>21</sub>(26.5) , and Q<sub>22</sub>(34.5) transitions near 224.8155 nm and the Q<sub>11</sub>(12.5) , R<sub>12</sub>(19.5) , P<sub>21</sub>(12.5) , and Q<sub>22</sub>(19.5) transitions near 226.1026 nm, which were studied in Ref. <span><span>[1]</span></span>. The combination of the new diagnostic wavelength with previously validated diagnostics yields low-uncertainty vibrational temperature time-histories that are in excellent agreement with previously inferred vibrational relaxation time results from Refs. <span><span>[2]</span></span> and <span><span>[3]</span></span>. Future work will apply this two-color nitric oxide vibrational temperature diagnostic to probe the vibrational temperature of NO formed in high-temperature, shock-heated air at conditions relevant to hypersonic and reentry vehicles.</div></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"332 ","pages":"Article 109275"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Spectroscopy & Radiative Transfer","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022407324003820","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Development of a new ultraviolet (UV) laser absorption diagnostic has enabled the probing of nitric oxide (NO) in the second excited vibrational state (v” = 2) for inferences of quantum-state-specific number density and vibrational temperature time-histories. Spectroscopic modeling informed the selection of the new 246.3222 nm wavelength, as this wavelength exhibits high sensitivity for thermometry in the 2000 – 8000 K temperature range. This 246.3222 nm absorption feature consists of contributions from the , , , and transitions all originating in the v” = 2 state. Absorption cross-sections at this selected wavelength were measured in reflected shock experiments for sweeps of both wavelength and temperature. The wavelength sweep investigated cross-sections over a 246.3202 – 246.3246 nm range at 4590 K, and the temperature sweep measured cross-sections over a 2500 – 7500 K range at the peak of the absorption feature (246.3222 nm). Cross-section results agree with the Stanford NO gamma-band model to within 5%, confirming the use of the model for subsequent thermometry studies. Thermometry was demonstrated in reflected shock experiments probing the vibrational relaxation and chemical reactions in 2% NO diluted in either argon (Ar) or nitrogen (N). These experiments leverage previous UV laser absorption diagnostics that probe NO in the ground vibrational state (v” = 0) using the R11(26.5), R12(34.5), Q21(26.5) , and Q22(34.5) transitions near 224.8155 nm and the Q11(12.5) , R12(19.5) , P21(12.5) , and Q22(19.5) transitions near 226.1026 nm, which were studied in Ref. [1]. The combination of the new diagnostic wavelength with previously validated diagnostics yields low-uncertainty vibrational temperature time-histories that are in excellent agreement with previously inferred vibrational relaxation time results from Refs. [2] and [3]. Future work will apply this two-color nitric oxide vibrational temperature diagnostic to probe the vibrational temperature of NO formed in high-temperature, shock-heated air at conditions relevant to hypersonic and reentry vehicles.
期刊介绍:
Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer:
- Theoretical and experimental aspects of the spectra of atoms, molecules, ions, and plasmas.
- Spectral lineshape studies including models and computational algorithms.
- Atmospheric spectroscopy.
- Theoretical and experimental aspects of light scattering.
- Application of light scattering in particle characterization and remote sensing.
- Application of light scattering in biological sciences and medicine.
- Radiative transfer in absorbing, emitting, and scattering media.
- Radiative transfer in stochastic media.