Jiaxin Han , Huimin Liu , Junfang Cheng , Xinyue Wang , Chang Xu , Fuyin Zhang , Xufeng Dong
{"title":"A chondroitin sulfate-based temperature-responsive hydrogel with antimicrobial properties for epidermal wound repair in diabetic patients","authors":"Jiaxin Han , Huimin Liu , Junfang Cheng , Xinyue Wang , Chang Xu , Fuyin Zhang , Xufeng Dong","doi":"10.1016/j.eurpolymj.2024.113588","DOIUrl":null,"url":null,"abstract":"<div><div>Preventing wound infection and avoiding secondary damage to wounds during dressing changes represents a significant clinical challenge. Developing wound dressings that mitigate wound infections and facilitate peel-on-demand property may solve the problem. In this study, a temperature-responsive hydrogel with antimicrobial and on-demand peeling properties was proposed. Basing on the Schiff-base reaction, a gelatin/oxidized chondroitin sulfate (GelOCS@Ag) hydrogel loaded with silver nanoparticles was synthesized <em>via</em> the straightforward amalgamation of gelatin, chondroitin sulfate, and silver nanoparticles. The resultant hydrogel exhibited commendable tensile, recovery, and temperature-responsive properties, effectively reconciling the dichotomy between adhesion and reversible adhesion, and thereby achieving the desired effect of on-demand peeling. Specifically, the adhesion strength of the GelOCS@Ag hydrogel reached 12.7 kPa at body temperature, in stark contrast to a mere 1.2 kPa at 10℃, facilitating easy detachment from the wound surface. Furthermore, the hydrogel exhibited potent antimicrobial properties and demonstrated excellent cytocompatibility. The GelOCS@Ag hydrogel has promising applications within the realm of wound dressings.</div></div>","PeriodicalId":315,"journal":{"name":"European Polymer Journal","volume":"222 ","pages":"Article 113588"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014305724008498","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Preventing wound infection and avoiding secondary damage to wounds during dressing changes represents a significant clinical challenge. Developing wound dressings that mitigate wound infections and facilitate peel-on-demand property may solve the problem. In this study, a temperature-responsive hydrogel with antimicrobial and on-demand peeling properties was proposed. Basing on the Schiff-base reaction, a gelatin/oxidized chondroitin sulfate (GelOCS@Ag) hydrogel loaded with silver nanoparticles was synthesized via the straightforward amalgamation of gelatin, chondroitin sulfate, and silver nanoparticles. The resultant hydrogel exhibited commendable tensile, recovery, and temperature-responsive properties, effectively reconciling the dichotomy between adhesion and reversible adhesion, and thereby achieving the desired effect of on-demand peeling. Specifically, the adhesion strength of the GelOCS@Ag hydrogel reached 12.7 kPa at body temperature, in stark contrast to a mere 1.2 kPa at 10℃, facilitating easy detachment from the wound surface. Furthermore, the hydrogel exhibited potent antimicrobial properties and demonstrated excellent cytocompatibility. The GelOCS@Ag hydrogel has promising applications within the realm of wound dressings.
期刊介绍:
European Polymer Journal is dedicated to publishing work on fundamental and applied polymer chemistry and macromolecular materials. The journal covers all aspects of polymer synthesis, including polymerization mechanisms and chemical functional transformations, with a focus on novel polymers and the relationships between molecular structure and polymer properties. In addition, we welcome submissions on bio-based or renewable polymers, stimuli-responsive systems and polymer bio-hybrids. European Polymer Journal also publishes research on the biomedical application of polymers, including drug delivery and regenerative medicine. The main scope is covered but not limited to the following core research areas:
Polymer synthesis and functionalization
• Novel synthetic routes for polymerization, functional modification, controlled/living polymerization and precision polymers.
Stimuli-responsive polymers
• Including shape memory and self-healing polymers.
Supramolecular polymers and self-assembly
• Molecular recognition and higher order polymer structures.
Renewable and sustainable polymers
• Bio-based, biodegradable and anti-microbial polymers and polymeric bio-nanocomposites.
Polymers at interfaces and surfaces
• Chemistry and engineering of surfaces with biological relevance, including patterning, antifouling polymers and polymers for membrane applications.
Biomedical applications and nanomedicine
• Polymers for regenerative medicine, drug delivery molecular release and gene therapy
The scope of European Polymer Journal no longer includes Polymer Physics.