{"title":"NIR photothermal activation in epoxy/anhydride systems for advanced polymerization","authors":"Rania Rejeb , Philibert Lenormand , Gaspard Bichot , Didier Gigmes , Frédéric Dumur , Michael Schmitt , Julien Pinaud , Jacques Lalevée","doi":"10.1016/j.eurpolymj.2024.113589","DOIUrl":null,"url":null,"abstract":"<div><div>Photopolymerization is an important area of investigation due to its wide industrial applications; however, it generally employs quite energetic UV or near UV light to initiate the formation of the polymer. Even though it is very effective and offers several advantages, numerous drawbacks are also encountered such as low light penetration, harmfulness of wavelengths in the UV range and the use of photoinitiators that can be hazardous to health. In this context, many researchers have focused their interest in improving the spatial localization and the temporal control of the polymerization under safer irradiation wavelengths (NIR). In this work, we have successfully produced polyester thermosets by the reaction of epoxy resins with anhydride in the presence of a thermolatent <em>N</em>-Heterocyclic carbene generator using the NIR photothermal effect of a dye (heater) able to convert low-energetic NIR light into heat.</div></div>","PeriodicalId":315,"journal":{"name":"European Polymer Journal","volume":"222 ","pages":"Article 113589"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014305724008504","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Photopolymerization is an important area of investigation due to its wide industrial applications; however, it generally employs quite energetic UV or near UV light to initiate the formation of the polymer. Even though it is very effective and offers several advantages, numerous drawbacks are also encountered such as low light penetration, harmfulness of wavelengths in the UV range and the use of photoinitiators that can be hazardous to health. In this context, many researchers have focused their interest in improving the spatial localization and the temporal control of the polymerization under safer irradiation wavelengths (NIR). In this work, we have successfully produced polyester thermosets by the reaction of epoxy resins with anhydride in the presence of a thermolatent N-Heterocyclic carbene generator using the NIR photothermal effect of a dye (heater) able to convert low-energetic NIR light into heat.
期刊介绍:
European Polymer Journal is dedicated to publishing work on fundamental and applied polymer chemistry and macromolecular materials. The journal covers all aspects of polymer synthesis, including polymerization mechanisms and chemical functional transformations, with a focus on novel polymers and the relationships between molecular structure and polymer properties. In addition, we welcome submissions on bio-based or renewable polymers, stimuli-responsive systems and polymer bio-hybrids. European Polymer Journal also publishes research on the biomedical application of polymers, including drug delivery and regenerative medicine. The main scope is covered but not limited to the following core research areas:
Polymer synthesis and functionalization
• Novel synthetic routes for polymerization, functional modification, controlled/living polymerization and precision polymers.
Stimuli-responsive polymers
• Including shape memory and self-healing polymers.
Supramolecular polymers and self-assembly
• Molecular recognition and higher order polymer structures.
Renewable and sustainable polymers
• Bio-based, biodegradable and anti-microbial polymers and polymeric bio-nanocomposites.
Polymers at interfaces and surfaces
• Chemistry and engineering of surfaces with biological relevance, including patterning, antifouling polymers and polymers for membrane applications.
Biomedical applications and nanomedicine
• Polymers for regenerative medicine, drug delivery molecular release and gene therapy
The scope of European Polymer Journal no longer includes Polymer Physics.