Mostafa M. Abdelsamie , Yue Yang , Luling Li , M. Fatouh , Jianhui Liu , Mohamed I. Hassan Ali
{"title":"Development of a comprehensive simulation to explore the energy-saving and daylighting features of a multifunctional window in tropical climates","authors":"Mostafa M. Abdelsamie , Yue Yang , Luling Li , M. Fatouh , Jianhui Liu , Mohamed I. Hassan Ali","doi":"10.1016/j.enconman.2024.119325","DOIUrl":null,"url":null,"abstract":"<div><div>Leveraging the entire solar spectrum in building facades is crucial to achieving zero-energy buildings concept. This study presents a novel multifunctional window (MFW) that combines photovoltaic laminates with a selective liquid filter (SLF) in a mono-glazing system. For a comprehensive assessment of the energy and daylight performance of a standard office equipped with MFW, it has been developed an innovative model integrating thermal, electrical, optical, and energy aspects, utilizing both CFD and daylighting analysis tools. The net electricity benefit (NEB) serves as a key metric to evaluate the energy performance of MFWs compared to traditional windows. Additionally, Useful Daylight Illuminance (UDI), Illuminance Uniformity (U<sub>o</sub>), and Daylight Glare Probability (DGP) are employed to predict the annual daylight performance of MFW under various Photovoltaic-to-Space Ratios (PVSR). The findings reveal that using MFWs significantly reduces office cooling energy consumption, ranging from 41 % to 73 % in south-oriented buildings compared to standard glazing. Despite increased artificial lighting consumption (ALC) with PVSR, MFWs significantly improve the NEB due to higher energy generation and reduced cooling loads. MFWs with 50 % PVSR also enhance daylight distribution uniformity and minimize potential glare, while balancing PVSR at 50 % optimizes energy generation and ensures ample illumination in office spaces. Further, the levelized cost of electricity generation (LCOE<sub>el</sub>) for the MFW ranges from $0.166 to $0.143/kWh<sub>e</sub>.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"325 ","pages":"Article 119325"},"PeriodicalIF":9.9000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890424012664","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Leveraging the entire solar spectrum in building facades is crucial to achieving zero-energy buildings concept. This study presents a novel multifunctional window (MFW) that combines photovoltaic laminates with a selective liquid filter (SLF) in a mono-glazing system. For a comprehensive assessment of the energy and daylight performance of a standard office equipped with MFW, it has been developed an innovative model integrating thermal, electrical, optical, and energy aspects, utilizing both CFD and daylighting analysis tools. The net electricity benefit (NEB) serves as a key metric to evaluate the energy performance of MFWs compared to traditional windows. Additionally, Useful Daylight Illuminance (UDI), Illuminance Uniformity (Uo), and Daylight Glare Probability (DGP) are employed to predict the annual daylight performance of MFW under various Photovoltaic-to-Space Ratios (PVSR). The findings reveal that using MFWs significantly reduces office cooling energy consumption, ranging from 41 % to 73 % in south-oriented buildings compared to standard glazing. Despite increased artificial lighting consumption (ALC) with PVSR, MFWs significantly improve the NEB due to higher energy generation and reduced cooling loads. MFWs with 50 % PVSR also enhance daylight distribution uniformity and minimize potential glare, while balancing PVSR at 50 % optimizes energy generation and ensures ample illumination in office spaces. Further, the levelized cost of electricity generation (LCOEel) for the MFW ranges from $0.166 to $0.143/kWhe.
期刊介绍:
The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics.
The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.