Prediction of offshore wind turbine wake and output power using large eddy simulation and convolutional neural network

IF 9.9 1区 工程技术 Q1 ENERGY & FUELS
Songyue LIU , Qiusheng LI , Bin LU , Junyi HE
{"title":"Prediction of offshore wind turbine wake and output power using large eddy simulation and convolutional neural network","authors":"Songyue LIU ,&nbsp;Qiusheng LI ,&nbsp;Bin LU ,&nbsp;Junyi HE","doi":"10.1016/j.enconman.2024.119326","DOIUrl":null,"url":null,"abstract":"<div><div>Predicting offshore wind turbine wake and output power is crucial for optimizing wind farm layouts and maximizing wind energy production. In recent years, several Computational Fluid Dynamics methods have been developed to predict wind turbine wake and output power and demonstrated good performance compared with traditional analytical models. However, Computational Fluid Dynamics often involve high computational costs in offshore wind farm design because a wide range of offshore wind conditions need to be considered for turbines with different inter-turbine spacings. To ensure both the fidelity and efficiency for predicting offshore wind turbine wake and output power, Large Eddy Simulation and Convolutional Neural Network are utilized in this study. The Large Eddy Simulation effectively integrates the Actuator Line Method and Discretizing and Synthesizing Random Flow Generation to generate wake velocity, wake turbulence intensity, and output power for a stand-alone turbine under different incoming wind speeds and turbulence intensities. Using the generated dataset, Convolutional Neural Network effectively captures the relationship between inputs and outputs for the stand-alone turbine. The predicted wake data for the turbine can then act as input to estimate the output power density and wake characteristics of a downstream turbine. This process can be iteratively applied to predict the wake and output power of each subsequent turbine in a wind farm, supporting the identification of optimal inter-turbine spacing. The proposed method is illustrated using a utility-scale 5 MW wind turbine. The results show that the errors of predicted output power for a stand-alone wind turbine and multiple wind turbines are blew 3 %.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"324 ","pages":"Article 119326"},"PeriodicalIF":9.9000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890424012676","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting offshore wind turbine wake and output power is crucial for optimizing wind farm layouts and maximizing wind energy production. In recent years, several Computational Fluid Dynamics methods have been developed to predict wind turbine wake and output power and demonstrated good performance compared with traditional analytical models. However, Computational Fluid Dynamics often involve high computational costs in offshore wind farm design because a wide range of offshore wind conditions need to be considered for turbines with different inter-turbine spacings. To ensure both the fidelity and efficiency for predicting offshore wind turbine wake and output power, Large Eddy Simulation and Convolutional Neural Network are utilized in this study. The Large Eddy Simulation effectively integrates the Actuator Line Method and Discretizing and Synthesizing Random Flow Generation to generate wake velocity, wake turbulence intensity, and output power for a stand-alone turbine under different incoming wind speeds and turbulence intensities. Using the generated dataset, Convolutional Neural Network effectively captures the relationship between inputs and outputs for the stand-alone turbine. The predicted wake data for the turbine can then act as input to estimate the output power density and wake characteristics of a downstream turbine. This process can be iteratively applied to predict the wake and output power of each subsequent turbine in a wind farm, supporting the identification of optimal inter-turbine spacing. The proposed method is illustrated using a utility-scale 5 MW wind turbine. The results show that the errors of predicted output power for a stand-alone wind turbine and multiple wind turbines are blew 3 %.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Conversion and Management
Energy Conversion and Management 工程技术-力学
CiteScore
19.00
自引率
11.50%
发文量
1304
审稿时长
17 days
期刊介绍: The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics. The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信