Aaron Goldin , Elizabeth Buechler , Ram Rajagopal , Juan M. Rivas-Davila
{"title":"Design and validation of a power modulation system for residential demand-side management","authors":"Aaron Goldin , Elizabeth Buechler , Ram Rajagopal , Juan M. Rivas-Davila","doi":"10.1016/j.ijepes.2024.110374","DOIUrl":null,"url":null,"abstract":"<div><div>Residential loads have great potential to provide flexibility and other services to the grid, but many legacy or non-networked loads need additional hardware to enable such functionality. Currently available devices (e.g., smart thermostats or load control switches) that equip legacy loads with energy management features, provide narrow functionality to address specific use cases.</div><div>We propose the Smart Dim Fuse (SDF), a unified system with general purpose hardware, to enable legacy residential loads with versatile grid-interactive functionalities. By combining sensing, power electronics, and load modeling into a single architecture, the SDF offers comprehensive capabilities that would otherwise require a large number of disparate devices that are not inherently compatible. Based on a thoroughly tested prototype, we suggest that such a device can deliver this flexibility at a levelized cost of 0.018-0.052 $/kWh. The prototype power electronics operates at efficiencies between 96.4-98.5% at full load. The system can deliver fast load power modulation with a mean average percentage error below 1.8%.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"164 ","pages":"Article 110374"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061524005970","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Residential loads have great potential to provide flexibility and other services to the grid, but many legacy or non-networked loads need additional hardware to enable such functionality. Currently available devices (e.g., smart thermostats or load control switches) that equip legacy loads with energy management features, provide narrow functionality to address specific use cases.
We propose the Smart Dim Fuse (SDF), a unified system with general purpose hardware, to enable legacy residential loads with versatile grid-interactive functionalities. By combining sensing, power electronics, and load modeling into a single architecture, the SDF offers comprehensive capabilities that would otherwise require a large number of disparate devices that are not inherently compatible. Based on a thoroughly tested prototype, we suggest that such a device can deliver this flexibility at a levelized cost of 0.018-0.052 $/kWh. The prototype power electronics operates at efficiencies between 96.4-98.5% at full load. The system can deliver fast load power modulation with a mean average percentage error below 1.8%.
期刊介绍:
The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces.
As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.