Optimizing wind power forecasting with RNN-LSTM models through grid search cross-validation

IF 3.8 3区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Aml G. AbdElkader , Hanaa ZainEldin , Mahmoud M. Saafan
{"title":"Optimizing wind power forecasting with RNN-LSTM models through grid search cross-validation","authors":"Aml G. AbdElkader ,&nbsp;Hanaa ZainEldin ,&nbsp;Mahmoud M. Saafan","doi":"10.1016/j.suscom.2024.101054","DOIUrl":null,"url":null,"abstract":"<div><div>Wind energy is a crucial renewable resource that supports sustainable development and reduces carbon emissions. However, accurate wind power forecasting is challenging due to the inherent variability in wind patterns. This paper addresses these challenges by developing and evaluating some machine learning (ML) and deep learning (DL) models to enhance wind power forecasting accuracy. Traditional ML models, including Random Forest, k-nearest Neighbors, Ridge Regression, LASSO, Support Vector Regression, and Elastic Net, are compared with advanced DL models, such as Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), Stacked LSTM, Graph Convolutional Networks (GCN), Temporal Convolutional Networks (TCN), and the Informer network, which is well-suited for long-sequence forecasting and large, sparse datasets. Recognizing the complexities of wind power forecasting, such as the need for high-resolution meteorological data and the limitations of ML models like overfitting and computational complexity, a novel hybrid approach is proposed. This approach uses hybrid RNN-LSTM models optimized through GS-CV. The models were trained and validated on a SCADA dataset from a Turkish wind farm, comprising 50,530 instances. Data preprocessing included cleaning, encoding, and normalization, with 70 % of the dataset allocated for training and 30 % for validation. Model performance was evaluated using key metrics such as R², MSE, MAE, RMSE, and MedAE. The proposed hybrid RNN-LSTM Models achieved outstanding results, with the RNN-LSTM model attaining an R² of 99.99 %, significantly outperforming other models. These results demonstrate the effectiveness of the hybrid approach and the Informer network in improving wind power forecasting accuracy, contributing to grid stability, and facilitating the broader adoption of sustainable energy solutions. The proposed model also achieved superior comparable performance when compared to state-of-the-art methods.</div></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"45 ","pages":"Article 101054"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537924000994","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Wind energy is a crucial renewable resource that supports sustainable development and reduces carbon emissions. However, accurate wind power forecasting is challenging due to the inherent variability in wind patterns. This paper addresses these challenges by developing and evaluating some machine learning (ML) and deep learning (DL) models to enhance wind power forecasting accuracy. Traditional ML models, including Random Forest, k-nearest Neighbors, Ridge Regression, LASSO, Support Vector Regression, and Elastic Net, are compared with advanced DL models, such as Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), Stacked LSTM, Graph Convolutional Networks (GCN), Temporal Convolutional Networks (TCN), and the Informer network, which is well-suited for long-sequence forecasting and large, sparse datasets. Recognizing the complexities of wind power forecasting, such as the need for high-resolution meteorological data and the limitations of ML models like overfitting and computational complexity, a novel hybrid approach is proposed. This approach uses hybrid RNN-LSTM models optimized through GS-CV. The models were trained and validated on a SCADA dataset from a Turkish wind farm, comprising 50,530 instances. Data preprocessing included cleaning, encoding, and normalization, with 70 % of the dataset allocated for training and 30 % for validation. Model performance was evaluated using key metrics such as R², MSE, MAE, RMSE, and MedAE. The proposed hybrid RNN-LSTM Models achieved outstanding results, with the RNN-LSTM model attaining an R² of 99.99 %, significantly outperforming other models. These results demonstrate the effectiveness of the hybrid approach and the Informer network in improving wind power forecasting accuracy, contributing to grid stability, and facilitating the broader adoption of sustainable energy solutions. The proposed model also achieved superior comparable performance when compared to state-of-the-art methods.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Computing-Informatics & Systems
Sustainable Computing-Informatics & Systems COMPUTER SCIENCE, HARDWARE & ARCHITECTUREC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
10.70
自引率
4.40%
发文量
142
期刊介绍: Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信