UATST: Towards unpaired arbitrary text-guided style transfer with cross-space modulation

IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Haibo Chen , Lei Zhao
{"title":"UATST: Towards unpaired arbitrary text-guided style transfer with cross-space modulation","authors":"Haibo Chen ,&nbsp;Lei Zhao","doi":"10.1016/j.cviu.2024.104246","DOIUrl":null,"url":null,"abstract":"<div><div>Existing style transfer methods usually utilize style images to represent the target style. Since style images need to be prepared in advance and are confined to existing artworks, these methods are limited in flexibility and creativity. Compared with images, language is a more natural, common, and flexible way for humans to transmit information. Therefore, a better choice is to utilize text descriptions instead of style images to represent the target style. To this end, we propose a novel <strong>U</strong>npaired <strong>A</strong>rbitrary <strong>T</strong>ext-guided <strong>S</strong>tyle <strong>T</strong>ransfer (<strong>UATST</strong>) framework, which can render arbitrary photographs in the style of arbitrary text descriptions with one single model. To the best of our knowledge, this is the first model that achieves Arbitrary-Text-Per-Model with unpaired training data. In detail, we first use a pre-trained VGG network to map the content image into the VGG feature space, and use a pre-trained CLIP text encoder to map the text description into the CLIP feature space. Then we introduce a cross-space modulation module to bridge these two feature spaces, so that the content and style information in two different spaces can be seamlessly and adaptively combined for stylization. In addition, to learn better style representations, we introduce a new CLIP-based style contrastive loss to our model. Extensive qualitative and quantitative experiments verify the effectiveness and superiority of our method.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"251 ","pages":"Article 104246"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314224003278","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Existing style transfer methods usually utilize style images to represent the target style. Since style images need to be prepared in advance and are confined to existing artworks, these methods are limited in flexibility and creativity. Compared with images, language is a more natural, common, and flexible way for humans to transmit information. Therefore, a better choice is to utilize text descriptions instead of style images to represent the target style. To this end, we propose a novel Unpaired Arbitrary Text-guided Style Transfer (UATST) framework, which can render arbitrary photographs in the style of arbitrary text descriptions with one single model. To the best of our knowledge, this is the first model that achieves Arbitrary-Text-Per-Model with unpaired training data. In detail, we first use a pre-trained VGG network to map the content image into the VGG feature space, and use a pre-trained CLIP text encoder to map the text description into the CLIP feature space. Then we introduce a cross-space modulation module to bridge these two feature spaces, so that the content and style information in two different spaces can be seamlessly and adaptively combined for stylization. In addition, to learn better style representations, we introduce a new CLIP-based style contrastive loss to our model. Extensive qualitative and quantitative experiments verify the effectiveness and superiority of our method.
UATST:通过跨空间调制实现不配对的任意文本引导样式传输
现有的风格转移方法通常使用风格图像来表示目标风格。由于风格图像需要提前准备,并且局限于现有的艺术品,因此这些方法的灵活性和创造性有限。与图像相比,语言是人类传递信息的一种更自然、更普遍、更灵活的方式。因此,更好的选择是使用文本描述而不是样式图像来表示目标样式。为此,我们提出了一种新的非配对任意文本引导风格迁移(UATST)框架,该框架可以用一个模型以任意文本描述的风格呈现任意照片。据我们所知,这是第一个用未配对的训练数据实现任意文本模型的模型。具体而言,我们首先使用预训练的VGG网络将内容图像映射到VGG特征空间,并使用预训练的CLIP文本编码器将文本描述映射到CLIP特征空间。然后,我们引入跨空间调制模块来桥接这两个特征空间,使两个不同空间中的内容和样式信息可以无缝地、自适应地组合在一起进行风格化。此外,为了学习更好的风格表示,我们在模型中引入了一个新的基于clip的风格对比损失。大量的定性和定量实验验证了该方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Vision and Image Understanding
Computer Vision and Image Understanding 工程技术-工程:电子与电气
CiteScore
7.80
自引率
4.40%
发文量
112
审稿时长
79 days
期刊介绍: The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views. Research Areas Include: • Theory • Early vision • Data structures and representations • Shape • Range • Motion • Matching and recognition • Architecture and languages • Vision systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信