Xuehong Zhang , Wanting Cui , Jun Yan , Xuemeng Yang , Mouyixing Chen , Pingping Jiang , Guo Yu
{"title":"Physiological responses of Leersia hexandra Swart to Cu and Ni Co-contamination: Implications for phytoremediation","authors":"Xuehong Zhang , Wanting Cui , Jun Yan , Xuemeng Yang , Mouyixing Chen , Pingping Jiang , Guo Yu","doi":"10.1016/j.eti.2024.103924","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the physiological responses, co-enrichment mechanisms, and rhizospheric environment characteristics of <em>L. hexandra</em> in soils polluted with copper (Cu) and nickel (Ni). The growth of <em>L. hexandra</em> was significantly inhibited (<em>p</em> < 0.05) under combined Cu and Ni stress, particularly at higher Cu concentrations (150 mg·kg<sup>−1</sup>), leading to stunted growth, yellowing, and wilting. The accumulation of heavy metals was predominantly observed in the roots, with Cu showing a higher accumulation than Ni. Furthermore, heavy metal stress altered the rhizospheric microbial community, reducing the relative abundance of Firmicutes while increasing that of Proteobacteria, Patescibacteria, and Bacteroidota. The secretion of organic acids, particularly malic acid, increased under heavy metal stress, indicating an adaptive mechanism of <em>L. hexandra</em>. These findings enhance our understanding of the adaptation mechanisms of plants to heavy metal co-contamination and provide insights into the development of effective phytoremediation strategies. Future research will focus on field trials and advanced molecular analyses to further unravel the mechanisms of heavy metal tolerance in <em>L. hexandra</em>, enhancing its application in phytoremediation strategies.</div></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"37 ","pages":"Article 103924"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology & Innovation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352186424004000","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the physiological responses, co-enrichment mechanisms, and rhizospheric environment characteristics of L. hexandra in soils polluted with copper (Cu) and nickel (Ni). The growth of L. hexandra was significantly inhibited (p < 0.05) under combined Cu and Ni stress, particularly at higher Cu concentrations (150 mg·kg−1), leading to stunted growth, yellowing, and wilting. The accumulation of heavy metals was predominantly observed in the roots, with Cu showing a higher accumulation than Ni. Furthermore, heavy metal stress altered the rhizospheric microbial community, reducing the relative abundance of Firmicutes while increasing that of Proteobacteria, Patescibacteria, and Bacteroidota. The secretion of organic acids, particularly malic acid, increased under heavy metal stress, indicating an adaptive mechanism of L. hexandra. These findings enhance our understanding of the adaptation mechanisms of plants to heavy metal co-contamination and provide insights into the development of effective phytoremediation strategies. Future research will focus on field trials and advanced molecular analyses to further unravel the mechanisms of heavy metal tolerance in L. hexandra, enhancing its application in phytoremediation strategies.
期刊介绍:
Environmental Technology & Innovation adopts a challenge-oriented approach to solutions by integrating natural sciences to promote a sustainable future. The journal aims to foster the creation and development of innovative products, technologies, and ideas that enhance the environment, with impacts across soil, air, water, and food in rural and urban areas.
As a platform for disseminating scientific evidence for environmental protection and sustainable development, the journal emphasizes fundamental science, methodologies, tools, techniques, and policy considerations. It emphasizes the importance of science and technology in environmental benefits, including smarter, cleaner technologies for environmental protection, more efficient resource processing methods, and the evidence supporting their effectiveness.