{"title":"Enhancing water resistance of metal-organic frameworks","authors":"Shufan Li, Jianquan Li, Qingyu Ma","doi":"10.1016/j.colsurfa.2024.135817","DOIUrl":null,"url":null,"abstract":"<div><div>Developing metal-organic frameworks (MOFs) with high water resistance is of high significance because it can largely extend their applications, such as catalysis and adsorption in aqueous solutions. Herein, we present a typical MOF, i.e., CuBTC [Cu<sub>3</sub>(BTC)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub> (BTC = benzene-1,3,5-tricarboxylate) with high water resistance by post-modification reactions with six commercially available silanes at room temperature, resulting in CuBTC@SILANE. Various techniques demonstrated that the modification successfully incorporates organosilicon moieties on the surface of CuBTC without altering its original structure, significantly enhancing its water resistance. In contrast to pristine CuBTC, CuBTC@SILANE maintains its crystallinity, morphology, and pore structure even after prolonged exposure to water. The modified MOF also exhibits superior stability in various solvents and enhances CO<sub>2</sub> adsorption efficiency, retaining high CO<sub>2</sub> adsorption capacity even after exposure to water for 1 day. This simple silane modification approach not only addresses the water sensitivity of CuBTC but also holds promise for extending the aqueous applications of other similar MOFs, thereby broadening their potential uses in catalysis and adsorption.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"707 ","pages":"Article 135817"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927775724026815","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Developing metal-organic frameworks (MOFs) with high water resistance is of high significance because it can largely extend their applications, such as catalysis and adsorption in aqueous solutions. Herein, we present a typical MOF, i.e., CuBTC [Cu3(BTC)2(H2O)3]n (BTC = benzene-1,3,5-tricarboxylate) with high water resistance by post-modification reactions with six commercially available silanes at room temperature, resulting in CuBTC@SILANE. Various techniques demonstrated that the modification successfully incorporates organosilicon moieties on the surface of CuBTC without altering its original structure, significantly enhancing its water resistance. In contrast to pristine CuBTC, CuBTC@SILANE maintains its crystallinity, morphology, and pore structure even after prolonged exposure to water. The modified MOF also exhibits superior stability in various solvents and enhances CO2 adsorption efficiency, retaining high CO2 adsorption capacity even after exposure to water for 1 day. This simple silane modification approach not only addresses the water sensitivity of CuBTC but also holds promise for extending the aqueous applications of other similar MOFs, thereby broadening their potential uses in catalysis and adsorption.
期刊介绍:
Colloids and Surfaces A: Physicochemical and Engineering Aspects is an international journal devoted to the science underlying applications of colloids and interfacial phenomena.
The journal aims at publishing high quality research papers featuring new materials or new insights into the role of colloid and interface science in (for example) food, energy, minerals processing, pharmaceuticals or the environment.