Tao Wei, Chaolin Wang, Yu Zhao, Jing Bi, Yongfa Zhang
{"title":"A new semi–analytical method for elastic–strain softening circular tunnel with hydraulic–mechanical coupling","authors":"Tao Wei, Chaolin Wang, Yu Zhao, Jing Bi, Yongfa Zhang","doi":"10.1016/j.enggeo.2024.107826","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a novel coupled hydraulic–mechanical algorithm for analysing nonlinear seepage in circular tunnels with elastic strain softening characteristics. The model integrates porosity changes with permeability coefficients to formulate a set of nonlinear seepage equations. The Mohr–Coulomb criterion is used to determine the of rock stress yielding state, and the plastic strain <span><math><msubsup><mi>ε</mi><mi>θ</mi><mi>p</mi></msubsup></math></span> is used as a softening parameter to assess the degradation of rock strength. The proposed model is validated through a comparison with established numerical and analytical solutions. The pore water pressure distribution exhibits a distinctive three-stage curve under coupling conditions, with the seepage behaviour transitioning to a classical Laplace-type equation as the coupling coefficient weights diminish. Parametric analysis reveals that the brittleness index <span><math><mi>β</mi></math></span> is a pivotal factor governing the extent of the softening region. A decrease in residual strength <span><math><msubsup><mi>σ</mi><mi>c</mi><mo>∗</mo></msubsup></math></span> intensifies strain softening, leading to a more extensive softening zone. Conversely, a reduction in the angle of internal friction <span><math><mi>φ</mi></math></span> affects only the rock's strength without altering the softening intensity. The study also demonstrated that the pore water pressure diminishes the effective stress within the rock mass, resulting in a larger plastic zone than that under dry conditions. Finally, internal reinforcement and external support can effectively mitigate the effects of strain softening and seepage on the stability of the surrounding rock.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"344 ","pages":"Article 107826"},"PeriodicalIF":6.9000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013795224004265","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a novel coupled hydraulic–mechanical algorithm for analysing nonlinear seepage in circular tunnels with elastic strain softening characteristics. The model integrates porosity changes with permeability coefficients to formulate a set of nonlinear seepage equations. The Mohr–Coulomb criterion is used to determine the of rock stress yielding state, and the plastic strain is used as a softening parameter to assess the degradation of rock strength. The proposed model is validated through a comparison with established numerical and analytical solutions. The pore water pressure distribution exhibits a distinctive three-stage curve under coupling conditions, with the seepage behaviour transitioning to a classical Laplace-type equation as the coupling coefficient weights diminish. Parametric analysis reveals that the brittleness index is a pivotal factor governing the extent of the softening region. A decrease in residual strength intensifies strain softening, leading to a more extensive softening zone. Conversely, a reduction in the angle of internal friction affects only the rock's strength without altering the softening intensity. The study also demonstrated that the pore water pressure diminishes the effective stress within the rock mass, resulting in a larger plastic zone than that under dry conditions. Finally, internal reinforcement and external support can effectively mitigate the effects of strain softening and seepage on the stability of the surrounding rock.
期刊介绍:
Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.