Mind your Ps and Qs – Caveats in metabolomics data analysis

IF 11.8 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Yun Xu, Royston Goodacre
{"title":"Mind your Ps and Qs – Caveats in metabolomics data analysis","authors":"Yun Xu,&nbsp;Royston Goodacre","doi":"10.1016/j.trac.2024.118064","DOIUrl":null,"url":null,"abstract":"<div><div>Metabolomics studies use high-throughput analytical platforms to measure metabolites in biological samples. These mass spectrometry and/or NMR spectroscopy platforms generate complex data sets, and the analysis of such data poses many challenges, in particular the high dimensionality with relatively fewer number of samples means that sophisticated statistical models are required to analyse these data and these models come with caveats. In this review, we discuss some of these common caveats associated with most popular statistical tests and models. We present common mistakes found in metabolomics data analysis, along with recommendations on how to avoid them. The aim of this review is to raise awareness of the potential risks of misusing or abusing statistical models, and to promote good practices for reliable and reproducible metabolomics research. A new form of permutation test with emphasis on assessing the statistical significance level of the effect captured by supervised model is also proposed.</div></div>","PeriodicalId":439,"journal":{"name":"Trends in Analytical Chemistry","volume":"183 ","pages":"Article 118064"},"PeriodicalIF":11.8000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Analytical Chemistry","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165993624005478","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Metabolomics studies use high-throughput analytical platforms to measure metabolites in biological samples. These mass spectrometry and/or NMR spectroscopy platforms generate complex data sets, and the analysis of such data poses many challenges, in particular the high dimensionality with relatively fewer number of samples means that sophisticated statistical models are required to analyse these data and these models come with caveats. In this review, we discuss some of these common caveats associated with most popular statistical tests and models. We present common mistakes found in metabolomics data analysis, along with recommendations on how to avoid them. The aim of this review is to raise awareness of the potential risks of misusing or abusing statistical models, and to promote good practices for reliable and reproducible metabolomics research. A new form of permutation test with emphasis on assessing the statistical significance level of the effect captured by supervised model is also proposed.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Trends in Analytical Chemistry
Trends in Analytical Chemistry 化学-分析化学
CiteScore
20.00
自引率
4.60%
发文量
257
审稿时长
3.4 months
期刊介绍: TrAC publishes succinct and critical overviews of recent advancements in analytical chemistry, designed to assist analytical chemists and other users of analytical techniques. These reviews offer excellent, up-to-date, and timely coverage of various topics within analytical chemistry. Encompassing areas such as analytical instrumentation, biomedical analysis, biomolecular analysis, biosensors, chemical analysis, chemometrics, clinical chemistry, drug discovery, environmental analysis and monitoring, food analysis, forensic science, laboratory automation, materials science, metabolomics, pesticide-residue analysis, pharmaceutical analysis, proteomics, surface science, and water analysis and monitoring, these critical reviews provide comprehensive insights for practitioners in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信