Rhodiola rosea L. extract ameliorates ethanol-induced gastric ulcer in rats by alleviating oxidative stress and inflammation via NF-κB pathway inhibition

IF 5.4 Q1 PLANT SCIENCES
Rahamat Unissa Syed , Mohd.Abdul Hadi , Aisha Mofareh Almarir , Amal Mohammad Alahmari , Yusra Hasan Alremthi , Asia Abdulrahman A. Alsagri , Danah Laimooniah , Mohammed Khaled Bin Break
{"title":"Rhodiola rosea L. extract ameliorates ethanol-induced gastric ulcer in rats by alleviating oxidative stress and inflammation via NF-κB pathway inhibition","authors":"Rahamat Unissa Syed ,&nbsp;Mohd.Abdul Hadi ,&nbsp;Aisha Mofareh Almarir ,&nbsp;Amal Mohammad Alahmari ,&nbsp;Yusra Hasan Alremthi ,&nbsp;Asia Abdulrahman A. Alsagri ,&nbsp;Danah Laimooniah ,&nbsp;Mohammed Khaled Bin Break","doi":"10.1016/j.cpb.2024.100421","DOIUrl":null,"url":null,"abstract":"<div><div><em>Rhodiola rosea L</em>. is a traditional plant that has been found to exhibit a wide range of biological activities, however, there is a lack of research regarding its potential anti-ulcer activity. In this study, the plant’s anti-ulcer activity has been evaluated in detail for the first time. <em>R. rosea</em> methanolic extract anti-ulcer activity was investigated against ethanol-induced ulcer rats. The results showed that administering the extract to ulcerated rats reduced gastric acidity and ulcer index while improving nitric oxide (NO) and cytoprotective prostaglandin E2 (PGE2), as well as anti-oxidants glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD). On the other hand, the extract decreased malondialdehyde (MDA) and myeloperoxidase (MPO) levels. Further, ELISA assays showed that <em>R. rosea</em> extract decreased pro-inflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α levels in ulcerated rats. Western blot analysis confirmed the ELISA results, indicating that the extract decreased IL-6 and TNF-α protein expression and inhibited the NF-κB signalling pathway. Macroscopic and histological investigations on ulcerated rats verified the extract's anti-ulcer effects. The extract’s anti-ulcer activity was dose-dependent with the 600 mg/kg/day dose showing superior activity across all assays. GCMS analysis identified the extract’s major constituents as bicyclo [4.1.0] heptane, 7-pentyl (50.784 %) followed by 2-heptadecenal (33.2 %), and it is thought that these compounds play a crucial role in the extract’s bioactivity. Finally, <em>in silico</em> studies showed that the most abundant molecule, bicyclo [4.1.0] heptane, 7-pentyl, demonstrated the highest binding affinity in its interaction with H<sup>+</sup>, K<sup>+</sup>-ATPase. Taken together, the extract’s mode of action might include the inhibition of H<sup>+</sup>, K<sup>+</sup>-ATPase by bicyclo [4.1.0] heptane, 7-pentyl, followed by NF-κB pathway inhibition and subsequent regulation of cytokines and other inflammatory biomarkers. This innovative finding has the potential to lead to a successful anti-ulcer medicine, which might be followed by additional clinical trials or bioguided isolation research.</div></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"40 ","pages":"Article 100421"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214662824001038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Rhodiola rosea L. is a traditional plant that has been found to exhibit a wide range of biological activities, however, there is a lack of research regarding its potential anti-ulcer activity. In this study, the plant’s anti-ulcer activity has been evaluated in detail for the first time. R. rosea methanolic extract anti-ulcer activity was investigated against ethanol-induced ulcer rats. The results showed that administering the extract to ulcerated rats reduced gastric acidity and ulcer index while improving nitric oxide (NO) and cytoprotective prostaglandin E2 (PGE2), as well as anti-oxidants glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD). On the other hand, the extract decreased malondialdehyde (MDA) and myeloperoxidase (MPO) levels. Further, ELISA assays showed that R. rosea extract decreased pro-inflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α levels in ulcerated rats. Western blot analysis confirmed the ELISA results, indicating that the extract decreased IL-6 and TNF-α protein expression and inhibited the NF-κB signalling pathway. Macroscopic and histological investigations on ulcerated rats verified the extract's anti-ulcer effects. The extract’s anti-ulcer activity was dose-dependent with the 600 mg/kg/day dose showing superior activity across all assays. GCMS analysis identified the extract’s major constituents as bicyclo [4.1.0] heptane, 7-pentyl (50.784 %) followed by 2-heptadecenal (33.2 %), and it is thought that these compounds play a crucial role in the extract’s bioactivity. Finally, in silico studies showed that the most abundant molecule, bicyclo [4.1.0] heptane, 7-pentyl, demonstrated the highest binding affinity in its interaction with H+, K+-ATPase. Taken together, the extract’s mode of action might include the inhibition of H+, K+-ATPase by bicyclo [4.1.0] heptane, 7-pentyl, followed by NF-κB pathway inhibition and subsequent regulation of cytokines and other inflammatory biomarkers. This innovative finding has the potential to lead to a successful anti-ulcer medicine, which might be followed by additional clinical trials or bioguided isolation research.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Plant Biology
Current Plant Biology Agricultural and Biological Sciences-Plant Science
CiteScore
10.90
自引率
1.90%
发文量
32
审稿时长
50 days
期刊介绍: Current Plant Biology aims to acknowledge and encourage interdisciplinary research in fundamental plant sciences with scope to address crop improvement, biodiversity, nutrition and human health. It publishes review articles, original research papers, method papers and short articles in plant research fields, such as systems biology, cell biology, genetics, epigenetics, mathematical modeling, signal transduction, plant-microbe interactions, synthetic biology, developmental biology, biochemistry, molecular biology, physiology, biotechnologies, bioinformatics and plant genomic resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信