Establishment of a cell culture from Daphnia magna as an in vitro model for (eco)toxicology assays: Case study using Bisphenol A as a representative cytotoxic and endocrine disrupting chemical

IF 4.1 2区 环境科学与生态学 Q1 MARINE & FRESHWATER BIOLOGY
Sreevidya CP , Manoj Kumar TM , Soumya Balakrishnan , Suresh Kunjiraman , Manomi Sarasan , Jason T. Magnuson , Jayesh Puthumana
{"title":"Establishment of a cell culture from Daphnia magna as an in vitro model for (eco)toxicology assays: Case study using Bisphenol A as a representative cytotoxic and endocrine disrupting chemical","authors":"Sreevidya CP ,&nbsp;Manoj Kumar TM ,&nbsp;Soumya Balakrishnan ,&nbsp;Suresh Kunjiraman ,&nbsp;Manomi Sarasan ,&nbsp;Jason T. Magnuson ,&nbsp;Jayesh Puthumana","doi":"10.1016/j.aquatox.2024.107173","DOIUrl":null,"url":null,"abstract":"<div><div>Bisphenol A (BPA) is a widely used industrial compound found in polycarbonate plastics, epoxy resin, and various polymer materials, leading to its ubiquitous presence in the environment. The toxicity of BPA to aquatic organisms has been well documented following <em>in vivo</em> exposure scenarios, with known cytotoxic and endocrine-disrupting effects. As such, BPA was used in this study as a well-characterized chemical to implement more ethical and resource-efficient scientific practices in toxicity testing through new approach methods (NAMs). Due to the frequent use of <em>Daphnia</em> spp. as a model organism in toxicology, we developed an <em>in vitro</em> cell culture system from <em>Daphnia magna</em> embryos, with optimized medium to support cell longevity. The cultures were maintained for up to two months, demonstrating their stability and suitability for cytotoxicity studies. Using this novel system, lethal concentration 50 (LC<sub>50</sub>) values were determined at the 24 and 48 h time points following BPA exposure. Subsequently, oxidative stress, endocrine disruption, and DNA damage were assessed through gene expression, activity assays, and a comet assay in BPA-exposed cells. LC<sub>50</sub> values of 52 µM and 20 µM BPA were calculated after 24 and 48 h exposures, respectively. BPA cells exposed to 20 and 52 µM had significantly increased GSH, GPx, and GST activity levels. mRNA expression analysis revealed significant upregulations in the expression of <em>hsp70, hsp90, gst, gpx, vtg1</em>, and <em>cyp4</em>, with downregulations of <em>sod, cat</em>, and <em>ecr</em> following BPA exposure. Furthermore, comet assays showed a significantly higher level of DNA damage induced by BPA compared to controls, with greater comet and tail lengths. This study established a novel <em>in vitro Daphnia</em> model, using BPA as a case study for determining toxic effects, further highlighting the importance and applicability of utilizing alternative methods in ecotoxicological research through reducing animal use.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"278 ","pages":"Article 107173"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X24003436","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bisphenol A (BPA) is a widely used industrial compound found in polycarbonate plastics, epoxy resin, and various polymer materials, leading to its ubiquitous presence in the environment. The toxicity of BPA to aquatic organisms has been well documented following in vivo exposure scenarios, with known cytotoxic and endocrine-disrupting effects. As such, BPA was used in this study as a well-characterized chemical to implement more ethical and resource-efficient scientific practices in toxicity testing through new approach methods (NAMs). Due to the frequent use of Daphnia spp. as a model organism in toxicology, we developed an in vitro cell culture system from Daphnia magna embryos, with optimized medium to support cell longevity. The cultures were maintained for up to two months, demonstrating their stability and suitability for cytotoxicity studies. Using this novel system, lethal concentration 50 (LC50) values were determined at the 24 and 48 h time points following BPA exposure. Subsequently, oxidative stress, endocrine disruption, and DNA damage were assessed through gene expression, activity assays, and a comet assay in BPA-exposed cells. LC50 values of 52 µM and 20 µM BPA were calculated after 24 and 48 h exposures, respectively. BPA cells exposed to 20 and 52 µM had significantly increased GSH, GPx, and GST activity levels. mRNA expression analysis revealed significant upregulations in the expression of hsp70, hsp90, gst, gpx, vtg1, and cyp4, with downregulations of sod, cat, and ecr following BPA exposure. Furthermore, comet assays showed a significantly higher level of DNA damage induced by BPA compared to controls, with greater comet and tail lengths. This study established a novel in vitro Daphnia model, using BPA as a case study for determining toxic effects, further highlighting the importance and applicability of utilizing alternative methods in ecotoxicological research through reducing animal use.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aquatic Toxicology
Aquatic Toxicology 环境科学-毒理学
CiteScore
7.10
自引率
4.40%
发文量
250
审稿时长
56 days
期刊介绍: Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems. Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信