A comparison of linear and nonlinear 3D semi-Lagrangian motion of moored Waverider and Spotter wave buoys

IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL
Yue Ding , Paul H. Taylor , Thobani Hlophe , Wenhua Zhao
{"title":"A comparison of linear and nonlinear 3D semi-Lagrangian motion of moored Waverider and Spotter wave buoys","authors":"Yue Ding ,&nbsp;Paul H. Taylor ,&nbsp;Thobani Hlophe ,&nbsp;Wenhua Zhao","doi":"10.1016/j.coastaleng.2024.104661","DOIUrl":null,"url":null,"abstract":"<div><div>Wave records from oceanographic buoys remain indispensable in coastal and offshore engineering. Modern wave buoys produce semi-Lagrangian time histories of motions in three dimensions (one vertical and two horizontal) in addition to the standard statistical output. Datawell Directional Waverider (DWR) buoys have long been recognized as providing high quality measurements, while other types of wave buoys have been introduced more recently. This study analyses field data measured by two types of wave buoys: one DWR4 and three Sofar Spotter buoys, all moored on intermediate water depth offshore Western Australia. The time histories recorded by the two types of wave buoys in three orthogonal directions and the relationship between them are comprehensively examined on a wave-by-wave basis. Although focusing on mild sea states, the analysis identifies significant second-order motion components in the horizontal plane for both DWR4 and Spotter buoys. It is confirmed that both DWR and Spotters work well and consistently in the vertical direction. However, we present considerable evidence that the DWR4 buoy overestimates the displacements in the horizontal plane by a factor of approximately 1/0.85 times, while the Spotter buoys’ displacements match well with theoretical predictions in the horizontal plane. Despite this apparent calibration error, both the mean wave direction and the directional spreading match well between the two buoy types, with the DWR4 giving slightly lower spreading angles at higher frequency. These observations shed new insights into the wave buoy motions in 3D on intermediate water depth.</div></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"196 ","pages":"Article 104661"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378383924002096","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Wave records from oceanographic buoys remain indispensable in coastal and offshore engineering. Modern wave buoys produce semi-Lagrangian time histories of motions in three dimensions (one vertical and two horizontal) in addition to the standard statistical output. Datawell Directional Waverider (DWR) buoys have long been recognized as providing high quality measurements, while other types of wave buoys have been introduced more recently. This study analyses field data measured by two types of wave buoys: one DWR4 and three Sofar Spotter buoys, all moored on intermediate water depth offshore Western Australia. The time histories recorded by the two types of wave buoys in three orthogonal directions and the relationship between them are comprehensively examined on a wave-by-wave basis. Although focusing on mild sea states, the analysis identifies significant second-order motion components in the horizontal plane for both DWR4 and Spotter buoys. It is confirmed that both DWR and Spotters work well and consistently in the vertical direction. However, we present considerable evidence that the DWR4 buoy overestimates the displacements in the horizontal plane by a factor of approximately 1/0.85 times, while the Spotter buoys’ displacements match well with theoretical predictions in the horizontal plane. Despite this apparent calibration error, both the mean wave direction and the directional spreading match well between the two buoy types, with the DWR4 giving slightly lower spreading angles at higher frequency. These observations shed new insights into the wave buoy motions in 3D on intermediate water depth.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Coastal Engineering
Coastal Engineering 工程技术-工程:大洋
CiteScore
9.20
自引率
13.60%
发文量
0
审稿时长
3.5 months
期刊介绍: Coastal Engineering is an international medium for coastal engineers and scientists. Combining practical applications with modern technological and scientific approaches, such as mathematical and numerical modelling, laboratory and field observations and experiments, it publishes fundamental studies as well as case studies on the following aspects of coastal, harbour and offshore engineering: waves, currents and sediment transport; coastal, estuarine and offshore morphology; technical and functional design of coastal and harbour structures; morphological and environmental impact of coastal, harbour and offshore structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信