Abdulrahman A. Alshdadi, Abdulwahab Ali Almazroi, Nasir Ayub
{"title":"IoT-driven load forecasting with machine learning for logistics planning","authors":"Abdulrahman A. Alshdadi, Abdulwahab Ali Almazroi, Nasir Ayub","doi":"10.1016/j.iot.2024.101441","DOIUrl":null,"url":null,"abstract":"<div><div>Forecasting electricity load in logistics is crucial for managing dynamic energy demands. This research introduces the Integrated Load Forecasting System (ILFS), integrating IoT-driven load forecasting with advanced machine learning. As pioneers in logistics-focused electricity load forecasting, we acknowledge challenges posed by operational metrics, external factors, and diverse features. Starting with thorough preparation, including managing missing data and normalization, ILFS incorporates novel approaches such as Hybrid Boruta with XGBoost (BXG) for feature selection and Uniform Manifold Projection and Approximation (UMAP) for lower dimensionality. In the classification phase, we introduce a pioneering approach: the Hybrid Huber Regression with ResNet (HRRN) model, fine-tuned using the Coyote Optimization Algorithm (COA). Demonstrating scalability and interpretability, ILFS adjusts to various electricity load data scenarios, capturing trends in logistics supply warehouses across different days. Validation metrics underscore ILFS’s efficacy, achieving 98% accuracy, 4 MAE, 12 MSE, 5 RMSE, and 0.99 R-squared (<span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>). With an average execution time of 7.2 s, ILFS outperforms current techniques, and rigorous statistical analyses support this superiority. ILFS emerges as a pivotal solution, meeting the necessities of precise electricity load forecasting in logistics driven by IoT technologies. This research strides towards harmonious integration of load forecasting, IoT, and logistics planning, ushering in advancements in the field.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"29 ","pages":"Article 101441"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660524003822","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Forecasting electricity load in logistics is crucial for managing dynamic energy demands. This research introduces the Integrated Load Forecasting System (ILFS), integrating IoT-driven load forecasting with advanced machine learning. As pioneers in logistics-focused electricity load forecasting, we acknowledge challenges posed by operational metrics, external factors, and diverse features. Starting with thorough preparation, including managing missing data and normalization, ILFS incorporates novel approaches such as Hybrid Boruta with XGBoost (BXG) for feature selection and Uniform Manifold Projection and Approximation (UMAP) for lower dimensionality. In the classification phase, we introduce a pioneering approach: the Hybrid Huber Regression with ResNet (HRRN) model, fine-tuned using the Coyote Optimization Algorithm (COA). Demonstrating scalability and interpretability, ILFS adjusts to various electricity load data scenarios, capturing trends in logistics supply warehouses across different days. Validation metrics underscore ILFS’s efficacy, achieving 98% accuracy, 4 MAE, 12 MSE, 5 RMSE, and 0.99 R-squared (). With an average execution time of 7.2 s, ILFS outperforms current techniques, and rigorous statistical analyses support this superiority. ILFS emerges as a pivotal solution, meeting the necessities of precise electricity load forecasting in logistics driven by IoT technologies. This research strides towards harmonious integration of load forecasting, IoT, and logistics planning, ushering in advancements in the field.
期刊介绍:
Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT.
The journal will place a high priority on timely publication, and provide a home for high quality.
Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.