Combining MRI radiomics and clinical features for early identification of drug-resistant epilepsy in people with newly diagnosed epilepsy

IF 2.3 3区 医学 Q2 BEHAVIORAL SCIENCES
Shijun Yang , Siying Chen , Yaling Huang , Yang Lu , Yi Chen , Liyun Ye , Qunhui Liu
{"title":"Combining MRI radiomics and clinical features for early identification of drug-resistant epilepsy in people with newly diagnosed epilepsy","authors":"Shijun Yang ,&nbsp;Siying Chen ,&nbsp;Yaling Huang ,&nbsp;Yang Lu ,&nbsp;Yi Chen ,&nbsp;Liyun Ye ,&nbsp;Qunhui Liu","doi":"10.1016/j.yebeh.2024.110165","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>To identify newly diagnosed patients with drug-resistant epilepsy (DRE) based on radiomics and clinical features.</div></div><div><h3>Methods</h3><div>A radiomics approach was used to combine clinical features with magnetic resonance imaging (MRI) features extracted by the ResNet-18 deep learning model to predict DRE. Three machine learning classifiers were built, and <em>k</em>-fold cross-validation was used to assess the classifier outcomes, and other evaluation metrics of accuracy, sensitivity, specificity, F1 score, and area under the curve (AUC) were used to evaluate the performance of these models.</div></div><div><h3>Results</h3><div>One hundred and thirty-four newly diagnosed epilepsy patients with 13 available clinical features and 1394 MRI features extracted by the ResNet-18 model were included in our study. Then three machine learning classifiers were built based on5 clinical features and 8 MRI features, including Support Vector Machine (SVM), Gradient-Boosted Decision Tree (GBDT) and Random Forest. After internally validation, the GBDT model performed the best, with an average accuracy of 0.85 [95% confidence interval (CI) 0.77–0.91], sensitivity of 0.97 [95% CI 0.85–1.00], specificity of 0.96 [95% CI 0.83–1.00], F1 score of 0.81 [95% CI 0.77–0.89], AUC of 0.95 [95% CI 0.82–0.99], and ten-fold cross validation avg score of 0.96 [95% CI 0.89–0.99] in test set.</div></div><div><h3>Significance</h3><div>This study offers a novel approach for early diagnosis of DRE. Radiomics can provide potential diagnostic and predictive information to support personalized treatment decisions.</div></div>","PeriodicalId":11847,"journal":{"name":"Epilepsy & Behavior","volume":"162 ","pages":"Article 110165"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epilepsy & Behavior","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S152550502400547X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

To identify newly diagnosed patients with drug-resistant epilepsy (DRE) based on radiomics and clinical features.

Methods

A radiomics approach was used to combine clinical features with magnetic resonance imaging (MRI) features extracted by the ResNet-18 deep learning model to predict DRE. Three machine learning classifiers were built, and k-fold cross-validation was used to assess the classifier outcomes, and other evaluation metrics of accuracy, sensitivity, specificity, F1 score, and area under the curve (AUC) were used to evaluate the performance of these models.

Results

One hundred and thirty-four newly diagnosed epilepsy patients with 13 available clinical features and 1394 MRI features extracted by the ResNet-18 model were included in our study. Then three machine learning classifiers were built based on5 clinical features and 8 MRI features, including Support Vector Machine (SVM), Gradient-Boosted Decision Tree (GBDT) and Random Forest. After internally validation, the GBDT model performed the best, with an average accuracy of 0.85 [95% confidence interval (CI) 0.77–0.91], sensitivity of 0.97 [95% CI 0.85–1.00], specificity of 0.96 [95% CI 0.83–1.00], F1 score of 0.81 [95% CI 0.77–0.89], AUC of 0.95 [95% CI 0.82–0.99], and ten-fold cross validation avg score of 0.96 [95% CI 0.89–0.99] in test set.

Significance

This study offers a novel approach for early diagnosis of DRE. Radiomics can provide potential diagnostic and predictive information to support personalized treatment decisions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Epilepsy & Behavior
Epilepsy & Behavior 医学-行为科学
CiteScore
5.40
自引率
15.40%
发文量
385
审稿时长
43 days
期刊介绍: Epilepsy & Behavior is the fastest-growing international journal uniquely devoted to the rapid dissemination of the most current information available on the behavioral aspects of seizures and epilepsy. Epilepsy & Behavior presents original peer-reviewed articles based on laboratory and clinical research. Topics are drawn from a variety of fields, including clinical neurology, neurosurgery, neuropsychiatry, neuropsychology, neurophysiology, neuropharmacology, and neuroimaging. From September 2012 Epilepsy & Behavior stopped accepting Case Reports for publication in the journal. From this date authors who submit to Epilepsy & Behavior will be offered a transfer or asked to resubmit their Case Reports to its new sister journal, Epilepsy & Behavior Case Reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信