Simultaneous biomethane and hydrochar recovery from washed elephant dung: The effects of inoculum source, substrate to inoculum ratio, and hydrothermal temperature
{"title":"Simultaneous biomethane and hydrochar recovery from washed elephant dung: The effects of inoculum source, substrate to inoculum ratio, and hydrothermal temperature","authors":"Chayanon Sawatdeenarunat , Boonya Charnnok , Rojapun Nirunsin , Sumate Chaiprapat , Chen-Yeon Chu","doi":"10.1016/j.crcon.2024.100297","DOIUrl":null,"url":null,"abstract":"<div><div>This research aims to develop the appropriate biorefinery process integrating anaerobic digestion (AD) and hydrothermal carbonization (HTC) to recover the highest energy from the pretreated elephant dung. Initially, the raw elephant dung was physically processed by washing with water to generate the liquid waste, i.e., washing water (WW), and solid waste, i.e., washed fiber (WF). The appropriate substrate-to-inoculum ratio (SIR) and the inoculum source of the AD of WW were determined and the HTC temperature of WF was also examined. The results indicated that the AD of WW with the SIR of 1:2 and anaerobically digested swine manure as the inoculum presented the highest methane and energy yields of 412.3 ± 9.9 N mL/g VS <sub>added</sub> and 2,220.1 ± 53.03 MJ/ton dry wt., respectively. For HTC of WF, the optimum condition was the hydrothermal temperature of 170 °C at the residence time of 60 min. The highest hydrochar and energy yields were 76.8 % ± 1.9 % dry wt. and 12,067.0 ± 452.1 MJ/ton dry wt., respectively. Thus, this biorefinery process could simultaneously treat elephant camp-derived waste and produce clean energy.</div></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"8 1","pages":"Article 100297"},"PeriodicalIF":6.4000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Resources Conversion","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588913324000863","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This research aims to develop the appropriate biorefinery process integrating anaerobic digestion (AD) and hydrothermal carbonization (HTC) to recover the highest energy from the pretreated elephant dung. Initially, the raw elephant dung was physically processed by washing with water to generate the liquid waste, i.e., washing water (WW), and solid waste, i.e., washed fiber (WF). The appropriate substrate-to-inoculum ratio (SIR) and the inoculum source of the AD of WW were determined and the HTC temperature of WF was also examined. The results indicated that the AD of WW with the SIR of 1:2 and anaerobically digested swine manure as the inoculum presented the highest methane and energy yields of 412.3 ± 9.9 N mL/g VS added and 2,220.1 ± 53.03 MJ/ton dry wt., respectively. For HTC of WF, the optimum condition was the hydrothermal temperature of 170 °C at the residence time of 60 min. The highest hydrochar and energy yields were 76.8 % ± 1.9 % dry wt. and 12,067.0 ± 452.1 MJ/ton dry wt., respectively. Thus, this biorefinery process could simultaneously treat elephant camp-derived waste and produce clean energy.
期刊介绍:
Carbon Resources Conversion (CRC) publishes fundamental studies and industrial developments regarding relevant technologies aiming for the clean, efficient, value-added, and low-carbon utilization of carbon-containing resources as fuel for energy and as feedstock for materials or chemicals from, for example, fossil fuels, biomass, syngas, CO2, hydrocarbons, and organic wastes via physical, thermal, chemical, biological, and other technical methods. CRC also publishes scientific and engineering studies on resource characterization and pretreatment, carbon material innovation and production, clean technologies related to carbon resource conversion and utilization, and various process-supporting technologies, including on-line or off-line measurement and monitoring, modeling, simulations focused on safe and efficient process operation and control, and process and equipment optimization.