Accurate scoliosis vertebral landmark localization on X-ray images via shape-constrained multi-stage cascaded CNNs

IF 6.2 3区 综合性期刊 Q1 Multidisciplinary
Zhiwei Wang , Jinxin Lv , Yunqiao Yang , Yi Lin , Qiang Li , Xin Li , Xin Yang
{"title":"Accurate scoliosis vertebral landmark localization on X-ray images via shape-constrained multi-stage cascaded CNNs","authors":"Zhiwei Wang ,&nbsp;Jinxin Lv ,&nbsp;Yunqiao Yang ,&nbsp;Yi Lin ,&nbsp;Qiang Li ,&nbsp;Xin Li ,&nbsp;Xin Yang","doi":"10.1016/j.fmre.2022.10.014","DOIUrl":null,"url":null,"abstract":"<div><div>Vertebral landmark localization is a crucial step in various spine-related clinical applications, which requires detecting the corner points of 17 vertebrae. However, the neighboring landmarks often disturb each other because of the homogeneous appearance of vertebrae, making vertebral landmark localization extremely difficult. In this paper, we propose a multi-stage cascaded convolutional neural network (CNN) to split a single task into two sequential steps: center point localization to roughly locate 17 center points of vertebrae, and corner point localization to determine four corner points for each vertebra without any disturbance. The landmarks in each step were located gradually from a set of initialized points by regressing offsets using cascaded CNNs. To resist the mutual attraction of the vertebrae, principal component analysis was employed to preserve the shape constraint in offset regression. We evaluated our method on the AASCE dataset, comprising 609 tight spinal anteroposterior X-ray images, and each image contained 17 vertebrae composed of the thoracic and lumbar spine for spinal shape characterization. The experimental results demonstrated the superior performance of vertebral landmark localization over other state-of-the-art methods, with the relative error decreasing from <span><math><mrow><mn>3.2</mn><mi>e</mi><mrow><mo>−</mo><mn>3</mn></mrow></mrow></math></span> to <span><math><mrow><mn>7.2</mn><mi>e</mi><mrow><mo>−</mo><mn>4</mn></mrow></mrow></math></span>.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"4 6","pages":"Pages 1657-1665"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667325822004290","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Vertebral landmark localization is a crucial step in various spine-related clinical applications, which requires detecting the corner points of 17 vertebrae. However, the neighboring landmarks often disturb each other because of the homogeneous appearance of vertebrae, making vertebral landmark localization extremely difficult. In this paper, we propose a multi-stage cascaded convolutional neural network (CNN) to split a single task into two sequential steps: center point localization to roughly locate 17 center points of vertebrae, and corner point localization to determine four corner points for each vertebra without any disturbance. The landmarks in each step were located gradually from a set of initialized points by regressing offsets using cascaded CNNs. To resist the mutual attraction of the vertebrae, principal component analysis was employed to preserve the shape constraint in offset regression. We evaluated our method on the AASCE dataset, comprising 609 tight spinal anteroposterior X-ray images, and each image contained 17 vertebrae composed of the thoracic and lumbar spine for spinal shape characterization. The experimental results demonstrated the superior performance of vertebral landmark localization over other state-of-the-art methods, with the relative error decreasing from 3.2e3 to 7.2e4.

Abstract Image

基于形状约束的多级级联cnn在x射线图像上精确定位脊柱侧凸椎体地标
椎体地标定位是各种脊柱相关临床应用的关键步骤,需要检测17个椎体的角点。然而,由于椎体的外观均质,相邻的标记常常相互干扰,使得椎体标记定位极为困难。在本文中,我们提出了一种多阶段级联卷积神经网络(CNN),将单个任务分解为两个连续的步骤:中心点定位大致定位17个椎骨中心点,角点定位在不受干扰的情况下确定每个椎骨的四个角点。通过级联cnn的偏移量回归,从一组初始点逐渐定位每一步的地标。为了抵抗椎体的相互吸引,在偏移回归中采用主成分分析来保持形状约束。我们在AASCE数据集上评估了我们的方法,该数据集包括609张紧密的脊柱正位x射线图像,每张图像包含由胸椎和腰椎组成的17块椎骨,用于脊柱形状表征。实验结果表明,与其他先进的方法相比,该方法具有优越的椎体地标定位性能,相对误差从3.2 2e−3降低到7.2 2e−4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fundamental Research
Fundamental Research Multidisciplinary-Multidisciplinary
CiteScore
4.00
自引率
1.60%
发文量
294
审稿时长
79 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信