Data-driven control of echo state-based recurrent neural networks with robust stability guarantees

IF 2.1 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
William D’Amico, Alessio La Bella, Marcello Farina
{"title":"Data-driven control of echo state-based recurrent neural networks with robust stability guarantees","authors":"William D’Amico,&nbsp;Alessio La Bella,&nbsp;Marcello Farina","doi":"10.1016/j.sysconle.2024.105974","DOIUrl":null,"url":null,"abstract":"<div><div>In this work we propose a new data-based approach for robust controller design for a rather general class of recurrent neural networks affected by bounded measurement noise. We first identify the model set compatible with available data in a selected model class via set membership (SM). Then, incremental input-to-state stability and desired performances for the closed loop system are enforced robustly to all models in the identified model set via a linear matrix inequality (LMI) optimization problem. Numerical results show the effectiveness of the comprehensive method.</div></div>","PeriodicalId":49450,"journal":{"name":"Systems & Control Letters","volume":"195 ","pages":"Article 105974"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & Control Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167691124002627","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we propose a new data-based approach for robust controller design for a rather general class of recurrent neural networks affected by bounded measurement noise. We first identify the model set compatible with available data in a selected model class via set membership (SM). Then, incremental input-to-state stability and desired performances for the closed loop system are enforced robustly to all models in the identified model set via a linear matrix inequality (LMI) optimization problem. Numerical results show the effectiveness of the comprehensive method.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Systems & Control Letters
Systems & Control Letters 工程技术-运筹学与管理科学
CiteScore
4.60
自引率
3.80%
发文量
144
审稿时长
6 months
期刊介绍: Founded in 1981 by two of the pre-eminent control theorists, Roger Brockett and Jan Willems, Systems & Control Letters is one of the leading journals in the field of control theory. The aim of the journal is to allow dissemination of relatively concise but highly original contributions whose high initial quality enables a relatively rapid review process. All aspects of the fields of systems and control are covered, especially mathematically-oriented and theoretical papers that have a clear relevance to engineering, physical and biological sciences, and even economics. Application-oriented papers with sophisticated and rigorous mathematical elements are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信