Cooperative terahertz quantum key distribution: Secret key rate analysis and optimization

IF 2 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Parth Toshniwal , Justin Jose , Sumit Gautam , Vimal Bhatia , Ondrej Krejcar
{"title":"Cooperative terahertz quantum key distribution: Secret key rate analysis and optimization","authors":"Parth Toshniwal ,&nbsp;Justin Jose ,&nbsp;Sumit Gautam ,&nbsp;Vimal Bhatia ,&nbsp;Ondrej Krejcar","doi":"10.1016/j.phycom.2024.102551","DOIUrl":null,"url":null,"abstract":"<div><div>In the recent years, there has been a growing interest in quantum key distribution (QKD) as a promising alternative to conventional cryptographic methods. QKD offers potential for ensuring absolute security in communication networks, leveraging the principles of quantum mechanics. This study diverges from previous research by investigating a cooperative continuous variable QKD (CVQKD) system operating at terahertz (THz) frequencies with multiple input multiple output (MIMO) technology, wherein the source and destination are assisted by a trusted decode-and-forward (DF) relay. Our focus lies on evaluating the secret key rate (SKR) of this system under direct reconciliation conditions and subsequently optimizing power and relay location to maximize the SKR. We address the practical concern of potential eavesdropping between the relay and the destination. Specifically, our analysis centers on the SKR performance of the coherent state-based CVQKD protocol under direct reconciliation conditions. Through numerical simulations, we demonstrate the significant enhancement in SKR achievable through optimization in the cooperative QKD system, yielding several noteworthy insights.</div></div>","PeriodicalId":48707,"journal":{"name":"Physical Communication","volume":"68 ","pages":"Article 102551"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874490724002696","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In the recent years, there has been a growing interest in quantum key distribution (QKD) as a promising alternative to conventional cryptographic methods. QKD offers potential for ensuring absolute security in communication networks, leveraging the principles of quantum mechanics. This study diverges from previous research by investigating a cooperative continuous variable QKD (CVQKD) system operating at terahertz (THz) frequencies with multiple input multiple output (MIMO) technology, wherein the source and destination are assisted by a trusted decode-and-forward (DF) relay. Our focus lies on evaluating the secret key rate (SKR) of this system under direct reconciliation conditions and subsequently optimizing power and relay location to maximize the SKR. We address the practical concern of potential eavesdropping between the relay and the destination. Specifically, our analysis centers on the SKR performance of the coherent state-based CVQKD protocol under direct reconciliation conditions. Through numerical simulations, we demonstrate the significant enhancement in SKR achievable through optimization in the cooperative QKD system, yielding several noteworthy insights.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Communication
Physical Communication ENGINEERING, ELECTRICAL & ELECTRONICTELECO-TELECOMMUNICATIONS
CiteScore
5.00
自引率
9.10%
发文量
212
审稿时长
55 days
期刊介绍: PHYCOM: Physical Communication is an international and archival journal providing complete coverage of all topics of interest to those involved in all aspects of physical layer communications. Theoretical research contributions presenting new techniques, concepts or analyses, applied contributions reporting on experiences and experiments, and tutorials are published. Topics of interest include but are not limited to: Physical layer issues of Wireless Local Area Networks, WiMAX, Wireless Mesh Networks, Sensor and Ad Hoc Networks, PCS Systems; Radio access protocols and algorithms for the physical layer; Spread Spectrum Communications; Channel Modeling; Detection and Estimation; Modulation and Coding; Multiplexing and Carrier Techniques; Broadband Wireless Communications; Wireless Personal Communications; Multi-user Detection; Signal Separation and Interference rejection: Multimedia Communications over Wireless; DSP Applications to Wireless Systems; Experimental and Prototype Results; Multiple Access Techniques; Space-time Processing; Synchronization Techniques; Error Control Techniques; Cryptography; Software Radios; Tracking; Resource Allocation and Inference Management; Multi-rate and Multi-carrier Communications; Cross layer Design and Optimization; Propagation and Channel Characterization; OFDM Systems; MIMO Systems; Ultra-Wideband Communications; Cognitive Radio System Architectures; Platforms and Hardware Implementations for the Support of Cognitive, Radio Systems; Cognitive Radio Resource Management and Dynamic Spectrum Sharing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信