A generalization of formal multiple zeta values related to multiple Eisenstein series and multiple q-zeta values

IF 0.6 3区 数学 Q3 MATHEMATICS
Annika Burmester
{"title":"A generalization of formal multiple zeta values related to multiple Eisenstein series and multiple q-zeta values","authors":"Annika Burmester","doi":"10.1016/j.jnt.2024.09.011","DOIUrl":null,"url":null,"abstract":"<div><div>We present the <em>τ</em>-invariant balanced quasi-shuffle algebra <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>f</mi></mrow></msup></math></span>, whose elements formalize (combinatorial) multiple Eisenstein series as well as multiple <em>q</em>-zeta values. In particular, <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>f</mi></mrow></msup></math></span> has natural maps into these two algebras, and we expect these maps to be isomorphisms. Racinet studied the algebra <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>f</mi></mrow></msup></math></span> of formal multiple zeta values by examining the corresponding affine scheme DM. Similarly, we present the affine scheme BM corresponding to the algebra <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>f</mi></mrow></msup></math></span>. We show that Racinet's affine scheme DM embeds into our affine scheme BM. This leads to a projection from the algebra <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>f</mi></mrow></msup></math></span> onto <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>f</mi></mrow></msup></math></span>. Via the above natural maps, this projection corresponds to extracting the constant terms of multiple Eisenstein series or the limit <span><math><mi>q</mi><mo>→</mo><mn>1</mn></math></span> of multiple <em>q</em>-zeta values.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"269 ","pages":"Pages 106-137"},"PeriodicalIF":0.6000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24002221","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present the τ-invariant balanced quasi-shuffle algebra Gf, whose elements formalize (combinatorial) multiple Eisenstein series as well as multiple q-zeta values. In particular, Gf has natural maps into these two algebras, and we expect these maps to be isomorphisms. Racinet studied the algebra Zf of formal multiple zeta values by examining the corresponding affine scheme DM. Similarly, we present the affine scheme BM corresponding to the algebra Gf. We show that Racinet's affine scheme DM embeds into our affine scheme BM. This leads to a projection from the algebra Gf onto Zf. Via the above natural maps, this projection corresponds to extracting the constant terms of multiple Eisenstein series or the limit q1 of multiple q-zeta values.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信