First order Stickelberger modules over imaginary quadratic fields

IF 0.6 3区 数学 Q3 MATHEMATICS
Saad El Boukhari
{"title":"First order Stickelberger modules over imaginary quadratic fields","authors":"Saad El Boukhari","doi":"10.1016/j.jnt.2024.10.005","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>K</mi><mo>/</mo><mi>k</mi></math></span> be a finite abelian extension of number fields of Galois group <em>G</em> with <em>k</em> imaginary quadratic. Let <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span> be a rational integer, and for a certain finite set <em>S</em> of places of <em>k</em>, let <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>K</mi><mo>,</mo><mi>S</mi></mrow></msub></math></span> be the ring of <em>S</em>-integers of <em>K</em>. We use generalized Stark elements to construct first order Stickelberger modules in odd higher algebraic <em>K</em>-groups of <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>K</mi><mo>,</mo><mi>S</mi></mrow></msub></math></span>. We show that the Fitting ideal (resp. index) of these modules inside the corresponding odd <em>K</em>-groups is exactly the Fitting ideal (resp. cardinality) of the even higher algebraic <em>K</em>-group <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msub><mo>(</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>K</mi><mo>,</mo><mi>S</mi></mrow></msub><mo>)</mo></math></span>.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"269 ","pages":"Pages 1-16"},"PeriodicalIF":0.6000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24002300","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let K/k be a finite abelian extension of number fields of Galois group G with k imaginary quadratic. Let n2 be a rational integer, and for a certain finite set S of places of k, let OK,S be the ring of S-integers of K. We use generalized Stark elements to construct first order Stickelberger modules in odd higher algebraic K-groups of OK,S. We show that the Fitting ideal (resp. index) of these modules inside the corresponding odd K-groups is exactly the Fitting ideal (resp. cardinality) of the even higher algebraic K-group K2n2(OK,S).
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信