Rational configuration problems and a family of curves

IF 0.6 3区 数学 Q3 MATHEMATICS
Jonathan Love
{"title":"Rational configuration problems and a family of curves","authors":"Jonathan Love","doi":"10.1016/j.jnt.2024.09.008","DOIUrl":null,"url":null,"abstract":"<div><div>Given <figure><img></figure>, we consider the number of rational points on the genus one curve<span><span><span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>η</mi></mrow></msub><mo>:</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mo>(</mo><mi>a</mi><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>+</mo><mi>b</mi><mo>(</mo><mn>2</mn><mi>x</mi><mo>)</mo><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mo>(</mo><mi>c</mi><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>+</mo><mi>d</mi><mo>(</mo><mn>2</mn><mi>x</mi><mo>)</mo><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>.</mo></math></span></span></span> We prove that the set of <em>η</em> for which <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>η</mi></mrow></msub><mo>(</mo><mi>Q</mi><mo>)</mo><mo>≠</mo><mo>∅</mo></math></span> has density zero, and that if a rational point <span><math><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo><mo>∈</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>η</mi></mrow></msub><mo>(</mo><mi>Q</mi><mo>)</mo></math></span> exists, then <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>η</mi></mrow></msub><mo>(</mo><mi>Q</mi><mo>)</mo></math></span> is infinite unless a certain explicit polynomial in <span><math><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> vanishes.</div><div>Curves of the form <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>η</mi></mrow></msub></math></span> naturally occur in the study of configurations of points in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> with rational distances between them. As one example demonstrating this framework, we prove that if a line through the origin in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> passes through a rational point on the unit circle, then it contains a dense set of points <em>P</em> such that the distances from <em>P</em> to each of the three points <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></math></span>, <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, and <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> are all rational. We also prove some results regarding whether a rational number can be expressed as a sum or product of slopes of rational right triangles.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"269 ","pages":"Pages 370-396"},"PeriodicalIF":0.6000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24002245","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given
, we consider the number of rational points on the genus one curveHη:y2=(a(1x2)+b(2x))2+(c(1x2)+d(2x))2. We prove that the set of η for which Hη(Q) has density zero, and that if a rational point (x0,y0)Hη(Q) exists, then Hη(Q) is infinite unless a certain explicit polynomial in a,b,c,d,x0,y0 vanishes.
Curves of the form Hη naturally occur in the study of configurations of points in Rn with rational distances between them. As one example demonstrating this framework, we prove that if a line through the origin in R2 passes through a rational point on the unit circle, then it contains a dense set of points P such that the distances from P to each of the three points (0,0), (0,1), and (1,1) are all rational. We also prove some results regarding whether a rational number can be expressed as a sum or product of slopes of rational right triangles.
有理位形问题和曲线族
在给定的条件下,我们考虑一格曲线hη上有理点的个数:y2=(a(1−x2)+b(2x))2+(c(1−x2)+d(2x))2。证明了Hη(Q)≠∅的η集合的密度为零,并且证明了如果有理点(x0,y0)∈Hη(Q)存在,则Hη(Q)是无限的,除非在a,b,c,d,x0,y0中有某个显式多项式消失。在研究Rn中具有有理距离的点的构形时,自然会出现Hη形式的曲线。作为证明这个框架的一个例子,我们证明如果一条直线经过R2中的原点经过单位圆上的一个有理点,那么它包含一个密集的点P,使得从P到(0,0),(0,1)和(1,1)三个点中的每一个点的距离都是有理的。我们还证明了有理数是否可以表示为有理数直角三角形斜率的和或积的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信