An Open-Source algorithm for automatic geometrical optimization of extruded liquid cold plates for enhanced thermal management in railway electronics

IF 6.1 2区 工程技术 Q2 ENERGY & FUELS
Raffaele De Rosa , Marco Bernagozzi , Anastasios Georgoulas , Luca Romagnuolo , Emma Frosina , Adolfo Senatore
{"title":"An Open-Source algorithm for automatic geometrical optimization of extruded liquid cold plates for enhanced thermal management in railway electronics","authors":"Raffaele De Rosa ,&nbsp;Marco Bernagozzi ,&nbsp;Anastasios Georgoulas ,&nbsp;Luca Romagnuolo ,&nbsp;Emma Frosina ,&nbsp;Adolfo Senatore","doi":"10.1016/j.applthermaleng.2024.124873","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents the development and application of an optimization algorithm for determining the geometric parameters of an extruded Liquid Cold Plate (LCP) with internally finned channels. The entire workflow operates within a fully open-source environment, offering a comprehensive and accessible solution for optimizing LCP geometric parameters for efficient thermal management in railway power electronics as well as other industrial applications. In particular, the aim is to minimize the maximum temperature and the temperature gradient at the interface between the LCP and an electronic device for electric trains that dissipates heat. The algorithm explores a defined range of geometric parameters and automatically generates combinations and performs Computational Fluid Dynamics (CFD) simulations, using the open-source C++ toolbox OpenFOAM. Implemented in a bash script, the algorithm not only automates the simulation process but also provides a geometry of the LCP that is easy to manufacture and cost-effective. The correct value of parameters, such as the distance between the fins bottom surface and the channel base (gap), along with others, has shown a significant impact, leading to a reduction in both the maximum interface temperature (8<!--> <!-->K) and the temperature gradient (25<!--> <!-->K/m) within the system.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"260 ","pages":"Article 124873"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431124025419","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the development and application of an optimization algorithm for determining the geometric parameters of an extruded Liquid Cold Plate (LCP) with internally finned channels. The entire workflow operates within a fully open-source environment, offering a comprehensive and accessible solution for optimizing LCP geometric parameters for efficient thermal management in railway power electronics as well as other industrial applications. In particular, the aim is to minimize the maximum temperature and the temperature gradient at the interface between the LCP and an electronic device for electric trains that dissipates heat. The algorithm explores a defined range of geometric parameters and automatically generates combinations and performs Computational Fluid Dynamics (CFD) simulations, using the open-source C++ toolbox OpenFOAM. Implemented in a bash script, the algorithm not only automates the simulation process but also provides a geometry of the LCP that is easy to manufacture and cost-effective. The correct value of parameters, such as the distance between the fins bottom surface and the channel base (gap), along with others, has shown a significant impact, leading to a reduction in both the maximum interface temperature (8 K) and the temperature gradient (25 K/m) within the system.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Thermal Engineering
Applied Thermal Engineering 工程技术-工程:机械
CiteScore
11.30
自引率
15.60%
发文量
1474
审稿时长
57 days
期刊介绍: Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application. The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信