Enhancing Wind Energy Conversion Efficiency: A Novel MPPT Approach Using P&O with ADRC Controllers versus PI Controllers with Kp and Ki Optimization via Genetic Algorithm and Ant Colony Optimization

Najoua Mrabet , Chirine Benzazah , Chakib Mohssine , El akkary Ahmed , Khouili Driss , Rerhrhaye Badr , Lahlouh Ilyas
{"title":"Enhancing Wind Energy Conversion Efficiency: A Novel MPPT Approach Using P&O with ADRC Controllers versus PI Controllers with Kp and Ki Optimization via Genetic Algorithm and Ant Colony Optimization","authors":"Najoua Mrabet ,&nbsp;Chirine Benzazah ,&nbsp;Chakib Mohssine ,&nbsp;El akkary Ahmed ,&nbsp;Khouili Driss ,&nbsp;Rerhrhaye Badr ,&nbsp;Lahlouh Ilyas","doi":"10.1016/j.cles.2024.100159","DOIUrl":null,"url":null,"abstract":"<div><div>This manuscript introduces an innovative Maximum Power Point Tracking (MPPT) strategy to improve the efficiency of Wind Energy Conversion Systems (WECS) equipped with Permanent Magnet Synchronous Generators (PMSG) under variable wind conditions. The proposed approach integrates Active Disturbance Rejection Control (ADRC) with the Perturb and Observe (P&amp;O) algorithm, effectively addressing challenges such as external disturbances and fluctuating wind environments. By combining ADRC with P&amp;O control, the system achieves enhanced tracking performance and adaptability.To validate the added value of this approach, we compare it with a traditional P&amp;O strategy combined with Proportional Integral (PI) control. For the PI-based method, controller parameters Kp and Ki are optimized using Genetic Algorithm (GA) and Ant Colony Optimization (ACO) to enhance control precision. The Integrated Time Absolute Error (ITAE) objective function is employed to fine-tune these parameters, further optimizing system performance. Our analysis underscores the superiority of ADRC in disturbance rejection and quick adaptability over the PI approach.The proposed strategy is tested under two distinct wind speed profiles—constant and fluctuating—through time-domain simulations in MATLAB/Simulink. Simulation results confirm the superior performance of the ADRC-P&amp;O method, highlighting its effectiveness in maximizing power extraction from wind energy and proving its potential for real-world applications. This study offers a significant advancement in wind energy technology by providing a robust and efficient solution for MPPT in WECS.</div></div>","PeriodicalId":100252,"journal":{"name":"Cleaner Energy Systems","volume":"9 ","pages":"Article 100159"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772783124000530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This manuscript introduces an innovative Maximum Power Point Tracking (MPPT) strategy to improve the efficiency of Wind Energy Conversion Systems (WECS) equipped with Permanent Magnet Synchronous Generators (PMSG) under variable wind conditions. The proposed approach integrates Active Disturbance Rejection Control (ADRC) with the Perturb and Observe (P&O) algorithm, effectively addressing challenges such as external disturbances and fluctuating wind environments. By combining ADRC with P&O control, the system achieves enhanced tracking performance and adaptability.To validate the added value of this approach, we compare it with a traditional P&O strategy combined with Proportional Integral (PI) control. For the PI-based method, controller parameters Kp and Ki are optimized using Genetic Algorithm (GA) and Ant Colony Optimization (ACO) to enhance control precision. The Integrated Time Absolute Error (ITAE) objective function is employed to fine-tune these parameters, further optimizing system performance. Our analysis underscores the superiority of ADRC in disturbance rejection and quick adaptability over the PI approach.The proposed strategy is tested under two distinct wind speed profiles—constant and fluctuating—through time-domain simulations in MATLAB/Simulink. Simulation results confirm the superior performance of the ADRC-P&O method, highlighting its effectiveness in maximizing power extraction from wind energy and proving its potential for real-world applications. This study offers a significant advancement in wind energy technology by providing a robust and efficient solution for MPPT in WECS.
提高风能转换效率:一种基于自抗扰控制器的P&O与基于遗传算法和蚁群优化的Kp和Ki优化的PI控制器的新型MPPT方法
本文介绍了一种创新的最大功率点跟踪(MPPT)策略,以提高在可变风力条件下配备永磁同步发电机(PMSG)的风能转换系统(WECS)的效率。该方法将自抗扰控制(ADRC)与扰动与观测(P&;O)算法相结合,有效地解决了外部干扰和波动风环境等挑战。通过将自抗扰控制器与P&;O控制相结合,增强了系统的跟踪性能和自适应能力。为了验证该方法的附加价值,我们将其与传统的P&;O策略结合比例积分(PI)控制进行了比较。对于基于pi的方法,采用遗传算法(GA)和蚁群算法(ACO)对控制器参数Kp和Ki进行优化,提高控制精度。利用积分时间绝对误差(ITAE)目标函数对这些参数进行微调,进一步优化系统性能。我们的分析强调了自抗扰和快速自适应优于PI方法。通过MATLAB/Simulink的时域仿真,在恒定风速和波动风速两种不同的风速剖面下对该策略进行了测试。仿真结果证实了ADRC-P&;O方法的优越性能,突出了其在最大限度地利用风能方面的有效性,并证明了其在实际应用中的潜力。该研究为wcs的MPPT提供了一个强大而高效的解决方案,为风能技术提供了重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信