{"title":"Turbulence and flapping pivot axis effects on torsional flutter harvester efficiency by closed-form formula","authors":"Yuhui Qin, Luca Caracoglia","doi":"10.1016/j.jweia.2024.105938","DOIUrl":null,"url":null,"abstract":"<div><div>This “Short Communication” investigates the dynamics of a torsional-flutter energy harvester in atmospheric winds with stationary turbulence. This apparatus is an example of a flutter mill, which operates by exploiting aeroelastic instability as a competitive alternative and as a renewable energy supply for one or few housing units. The apparatus has a rigid blade-airfoil that rotates about a pivot to generate flapping motion. Contrary to recent studies by the second author, the effect of random stationary turbulence on flutter onset is examined by an analytical approach, employed by Scanlan (1997) for bridge flutter analysis. Turbulence effect is simulated by suitably modifying the span-wise coherence equation of the aeroelastic load. The incipient flutter threshold is found as a function of turbulence properties. Various configurations are studied, i.e., pivot position, aspect ratio, turbulence coherence decay parameter and structural damping. The objective is to perform a thorough sensitivity analysis as the necessary premise for the planned, future examination of post-critical instability and operational efficiency of the harvester by suitable modeling and wind tunnel tests.</div></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"256 ","pages":"Article 105938"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wind Engineering and Industrial Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167610524003015","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This “Short Communication” investigates the dynamics of a torsional-flutter energy harvester in atmospheric winds with stationary turbulence. This apparatus is an example of a flutter mill, which operates by exploiting aeroelastic instability as a competitive alternative and as a renewable energy supply for one or few housing units. The apparatus has a rigid blade-airfoil that rotates about a pivot to generate flapping motion. Contrary to recent studies by the second author, the effect of random stationary turbulence on flutter onset is examined by an analytical approach, employed by Scanlan (1997) for bridge flutter analysis. Turbulence effect is simulated by suitably modifying the span-wise coherence equation of the aeroelastic load. The incipient flutter threshold is found as a function of turbulence properties. Various configurations are studied, i.e., pivot position, aspect ratio, turbulence coherence decay parameter and structural damping. The objective is to perform a thorough sensitivity analysis as the necessary premise for the planned, future examination of post-critical instability and operational efficiency of the harvester by suitable modeling and wind tunnel tests.
期刊介绍:
The objective of the journal is to provide a means for the publication and interchange of information, on an international basis, on all those aspects of wind engineering that are included in the activities of the International Association for Wind Engineering http://www.iawe.org/. These are: social and economic impact of wind effects; wind characteristics and structure, local wind environments, wind loads and structural response, diffusion, pollutant dispersion and matter transport, wind effects on building heat loss and ventilation, wind effects on transport systems, aerodynamic aspects of wind energy generation, and codification of wind effects.
Papers on these subjects describing full-scale measurements, wind-tunnel simulation studies, computational or theoretical methods are published, as well as papers dealing with the development of techniques and apparatus for wind engineering experiments.