A cellular automata modelling approach for grain growth topological evolution process of ternary cathode materials combined with deep neural networks

IF 10.1 1区 工程技术 Q1 ENERGY & FUELS
Tianyi Li , Ning Chen , Chunhua Yang , Hongzhen Liu , Biao Qi , Weihua Gui , Zhixing Wang , Jiexi Wang
{"title":"A cellular automata modelling approach for grain growth topological evolution process of ternary cathode materials combined with deep neural networks","authors":"Tianyi Li ,&nbsp;Ning Chen ,&nbsp;Chunhua Yang ,&nbsp;Hongzhen Liu ,&nbsp;Biao Qi ,&nbsp;Weihua Gui ,&nbsp;Zhixing Wang ,&nbsp;Jiexi Wang","doi":"10.1016/j.apenergy.2024.124980","DOIUrl":null,"url":null,"abstract":"<div><div>Ternary cathode materials are pivotal in high-performance battery technologies, with grain size influencing their electrochemical performance. However, the absence of real-time grain size inspection during material preparation poses challenges in maintaining the consistent quality of ternary cathode materials. To address this, this paper proposes a novel method employing cell automata to model the topological evolution of grain growth in these materials, integrated with deep neural networks (DNN). The grain growth process is divided into two stages: heating and constant temperature. In the heating stage, varying heating rates and plateau temperatures serve as DNN inputs, yielding the primary grain distribution for the cell automata model in the constant temperature stage. Based on cell automata, the grain growth model links the grain growth rate to the grain size distribution in the constant temperature stage. A surface energy constraint rule, based on local curvature and grain boundary surface tension, governs growth rates. The grain boundary growth ratio is also used to create a grain ID transition variable, dictating grain ID conversion in the model. This approach accurately simulates the dynamic evolution of polycrystalline grain size and morphology. Simulation results show that this method effectively models grain growth in ternary cathode materials, offering insights for optimising the sintering process and improving material quality.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"379 ","pages":"Article 124980"},"PeriodicalIF":10.1000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030626192402364X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Ternary cathode materials are pivotal in high-performance battery technologies, with grain size influencing their electrochemical performance. However, the absence of real-time grain size inspection during material preparation poses challenges in maintaining the consistent quality of ternary cathode materials. To address this, this paper proposes a novel method employing cell automata to model the topological evolution of grain growth in these materials, integrated with deep neural networks (DNN). The grain growth process is divided into two stages: heating and constant temperature. In the heating stage, varying heating rates and plateau temperatures serve as DNN inputs, yielding the primary grain distribution for the cell automata model in the constant temperature stage. Based on cell automata, the grain growth model links the grain growth rate to the grain size distribution in the constant temperature stage. A surface energy constraint rule, based on local curvature and grain boundary surface tension, governs growth rates. The grain boundary growth ratio is also used to create a grain ID transition variable, dictating grain ID conversion in the model. This approach accurately simulates the dynamic evolution of polycrystalline grain size and morphology. Simulation results show that this method effectively models grain growth in ternary cathode materials, offering insights for optimising the sintering process and improving material quality.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Energy
Applied Energy 工程技术-工程:化工
CiteScore
21.20
自引率
10.70%
发文量
1830
审稿时长
41 days
期刊介绍: Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信